Acta Photonica Sinica, Volume. 51, Issue 11, 1113001(2022)
Influence of High-order Dispersion on Turing Patterns in Microresonators
[1] JOHNSON A R, OKAWACHI Y, LEVY J S et al. Chip-based frequency combs with sub-100 GHz repetition rates[J]. Optics Letters, 37, 875-877(2012).
[2] OKAWACHI Y, SAHA K, LEVY J S et al. Octave-spanning frequency comb generation in a silicon nitride chip[J]. Optics Letters, 36, 3398-3400(2011).
[3] GRUDININ I S, YU N, MALEKI L. Generation of optical frequency combs with a CaF2 resonator[J]. Optics Letters, 34, 878-880(2009).
[4] YI X, YANG Q F, ZHANG X Y et al. Single-mode dispersive waves and soliton microcomb dynamics[J]. Nature Communications, 8, 14869(2017).
[5] SLAVCHEVA G, GORBACH A V, PIMENOV A. Coupled spatial multi-mode solitons in microcavity wires[J]. Physical Review B, 94, 245432(2016).
[6] RAJA A S, VOLOSHIN A S, GUO H et al. Electrically pumped photonic integrated soliton microcomb[J]. Nature Communications, 10, 680(2019).
[7] FATOME J, KIBLER B, LEO F et al. Polarization modulation instability in a nonlinear fiber Kerr resonator[J]. Optics Letters, 45, 5069-5072(2020).
[8] COILLET A, BALAKIREVA I, HENRIET R et al. Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators[J]. IEEE Photonics Journal, 5, 6100409(2013).
[9] COILLET A, CHEMBO Y K. On the robustness of phase locking in Kerr optical frequency combs[J]. Optics Letters, 39, 1529-1532(2014).
[10] PFEIFLE J, COILLET A, HENRIET R et al. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications[J]. Physical Review Letters, 114, 093902(2015).
[11] DUTT A, LUKE K, MANIPATRUNI S et al. On-chip optical squeezing[J]. Physical Review Applied, 3, 044005(2015).
[12] BAO H L, OLIVIERI L, ROWLEY M et al. Turing patterns in a fiber laser with a nested microresonator: robust and controllable microcomb generation[J]. Physical Review Research, 2, 023395(2020).
[13] GODEY C, BALAKIREVA I V, COILLET A et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes[J]. Physical Review A, 89, 063814(2014).
[14] LIU M L, WANG L R, SUN Q B et al. Influences of high-order dispersion on temporal and spectral properties of microcavity solitons[J]. Optics Express, 26, 16477-16487(2018).
[15] WANG S F, GUO H R, BAI X K et al. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion[J]. Optics Letters, 39, 2880-2883(2014).
[16] PARRA-RIVAS P, KNOBLOCH E, GOMILA D et al. Dark solitons in the Lugiato-Lefever equation with normal dispersion[J]. Physical Review A, 93, 063839(2013).
[17] CHEMBO Y K, MENYUK C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators[J]. Physical Review A, 87, 053852(2013).
[18] COEN S, RANDLE H G, SYLVESTRE T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).
[19] MILIÁN C, SKRYABIN D V. Soliton families and resonant radiation in a micro-ring resonator near zero group velocity dispersion[J]. Optics Express, 22, 3732-3739(2014).
[20] MALAGUTI S, CONFORTI M, TRILLO. Dispersive radiation induced by shock waves in passive resonators[J]. Optics Letters, 39, 5626-5629(2014).
Get Citation
Copy Citation Text
Xin XU, Huichun YE, Xueying JIN, Haoran GAO, Dong CHEN, Yang LU, Liandong YU. Influence of High-order Dispersion on Turing Patterns in Microresonators[J]. Acta Photonica Sinica, 2022, 51(11): 1113001
Category:
Received: Apr. 27, 2022
Accepted: Jun. 6, 2022
Published Online: Dec. 13, 2022
The Author Email: Xueying JIN (xyjin007@hfut.edu.cn), Liandong YU (liandongyu@upc.edu.cn)