Infrared and Laser Engineering, Volume. 51, Issue 8, 20220307(2022)
Research and application progress of holography technology in scattering imaging (invited)
[1] [1] Oliver B M. Sparkling spots rom diffraction [C]Proceedings of the IEEE, 1963, 51(1): 220221.
[2] Feng S, Kane C, Lee P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 61, 834-837(1988).
[3] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328(1988).
[4] Freund I. Looking through walls and around corners[J]. Physica A: Statistical Mechanics and its Applications, 168, 49-65(1990).
[5] Feng S, Lee P A. Mesoscopic conductors and correlations in laser speckle patterns[J]. Science, 251, 633-639(1991).
[6] Zuo Chao, Chen Qian. Computational optical imaging: An overview[J]. Infrared and Laser Engineering, 51, 20220110(2022).
[7] Shao X P, Su Y, Liu J P, et al. Connotation and system of computational imaging(Invited)[J]. Acta Photonica Sinica, 50, 0511001(2021).
[8] Zhu L, Shao X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 40, 011005(2020).
[9] Cheng J. Theory of ghost scattering with incoherent light sources[J]. Physical Review A, 93, 043808(2016).
[10] Cheng J. Theory of ghost scattering with biphoton states[J]. Photonics Research, 5, 41-45(2017).
[11] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).
[12] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[13] Popoff S M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).
[14] Yang H, Huang Y, Gong C, et al. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 7, 1-25(2014).
[15] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[16] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 13, R85(2002).
[17] Wang Y X, Wang D Y, Yang Y S. Application and analysis in the biomedicine field using digital holographic technology[J]. Chinese Journal of Lasers, 41, 0209002(2014).
[18] Wang H Y, Guo Z J, Zhang Z H. Image-plane digital holography for quantitative imaging of cells of chinese medical decoction pieces[J]. Chinese Journal of Lasers, 39, 0209002(2012).
[19] Javidi B, Nomura T. Securing information by use of digital holography[J]. Optics Letters, 25, 28-30(2000).
[20] Lai S, Neifeld M A. Digital wavefront reconstruction and its application to image encryption[J]. Optics Communications, 178, 283-289(2000).
[21] Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 2, 393-400(1963).
[22] Leith E N, Kozma A, Upatnieks J, et al. Holographic data storage in three-dimensional media[J]. Applied Optics, 5, 1303-1311(1966).
[23] [23] Staebler D L, Amodei J J. Coupledwave analysis of holographic stage in LiNbO3[M]Lmark Papers on Photefractive Nonlinear Optics. Washington, D C: Wld Scientific Publishing Company, 1995: 173180.
[24] Fan J Y, Yin B C, Wang W S. Three-dimensional deformation measurement based on double exposure digital holographic technology[J]. Infrared and Laser Engineering, 43, 1572-1576(2014).
[25] Leith E, Chen C, Chen H, et al. Imaging through scattering media with holography[J]. JOSA A, 9, 1148-1153(1992).
[26] Spitz E. Holographic reconstruction of objects through a diffusing medium in motion[J]. CR Acad Sci Ser B, 264, 1449-1452(1967).
[27] Zhang Y, Shin Y, Sung K, et al. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy[J]. Science Advances, 3, e1700553(2017).
[28] Ghaneizad M, Kavehvash Z, Fathi H, et al. Incoherent holographic optical phase conjugation for imaging through a scattering medium[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-10(2020).
[29] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).
[30] Naik D N, Ezawa T, Miyamoto Y, et al. Real-time coherence holography[J]. Optics Express, 18, 13782-13787(2010).
[31] Takeda M, Wang W, Duan Z, et al. Coherence holography[J]. Optics Express, 13, 9629-9635(2005).
[32] Naik D N, Singh R K, Ezawa T, et al. Photon correlation holography[J]. Optics Express, 19, 1408-1421(2011).
[33] Somkuwar A S, Das B, Vinu R V, et al. Holographic imaging through a scattering layer using speckle interferometry[J]. JOSA A, 34, 1392-1399(2017).
[34] Willomitzer F, Rangarajan P V, Li F, et al. Synthetic wavelength holography: An extension of Gabor's holographic principle to imaging with scattered wavefronts[J]. arXiv preprint, 1912.11438(2019).
[35] Willomitzer F, Rangarajan P V, Li F, et al. Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography[J]. Nature Communications, 12, 1-11(2021).
[36] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. JOSA, 56, 523(1966).
[37] Goodman J W, Huntley Jr W H, Jackson D W, et al. Wavefront-reconstruction imaging through random media[J]. Applied Physics Letters, 8, 311-313(1966).
[38] Indebetouw G, Klysubun P. Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography[J]. Optics Letters, 25, 212-214(2000).
[40] Pagonis D N, Nassiopoulou A G. Free-standing macroporous silicon membranes over a large cavity for filtering and lab-on-chip applications[J]. Microelectronic Engineering, 83, 1421-1425(2006).
[41] Paturzo M, Finizio A, Memmolo P, et al. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography[J]. Lab on a Chip, 12, 3073-3076(2012).
[42] Li S, Zhong J. Dynamic imaging through turbid media based on digital holography[J]. JOSA A, 31, 480-486(2014).
[43] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[44] Qiao M, Liu H, Pang G, et al. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection[J]. Scientific Reports, 7, 1-8(2017).
[45] Kodama S, Ohta M, Ikeda K, et al. Three-dimensional microscopic imaging through scattering media based on in-line phase-shift digital holography[J]. Applied Optics, 57, G345-G350(2019).
[46] [46] Akkermans E, Montambaux G. Mesoscopic Physics of Electrons Photons[M]. UK: Cambridge University Press, 2007: 3545.
[47] [47] Goodman J W. Speckle Phenomena in Optics: They Applications[M]. USA: Roberts Company Publishers, 2007: 1570.
[48] Fienup J R. Reconstruction of an object from the modulus of its fourier transform[J]. Optics Letters, 3, 27-29(1978).
[49] Kumar Singh R, Sharma M A. Recovery of complex valued objects from two-point intensity correlation measurement[J]. Applied Physics Letters, 104, 111108(2014).
[50] Takeda M, Singh A K, Naik D N, et al. Holographic correloscopy-unconventional holographic techniques for imaging a three-dimensional object through an opaque diffuser or via a scattering wall: A review[J]. IEEE Transactions on Industrial Informatics, 12, 1631-1640(2015).
[51] Chen Z Y, Chen L, Fan W R. Progress on scattering imaging technologies based on correlation holography[J]. Laser & Optoelectronics Progress, 57, 0200001(2021).
[52] Naik D N, Ezawa T, Miyamoto Y, et al. 3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift[J]. Optics Express, 17, 10633-10641(2009).
[53] Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3 D objects[J]. Light: Science & Applications, 6, e16219-e16219(2017).
[54] Vinu R V, Kyoohyun K, Somkuwar A S, et al. Imaging through scattering media using digital holography[J]. Optics Communications, 439, 218-223(2019).
[55] Chen L, Chen Z, Singh R K, et al. Imaging of polarimetric-phase object through scattering medium by phase shifting[J]. Optics Express, 28, 8145-8155(2020).
[56] Vinu R V, Chen Z, Singh R K, et al. Ghost diffraction holographic microscopy[J]. Optica, 7, 1697-1704(2020).
[57] Wang Yonghong, Chen Weijie, Zhong Shimin, et al. Research progress in phase unwrapping technology and its application[J]. Measurement & Control Technology, 37, 1-7, 16(2018).
[58] [58] Hayasaki Y, Tamano S, Yamamoto M, et al. Phaseshifting digital holography using two lowcoherence light sources with different wavelength[C]ICO20: Optical Infmation Processing. SPIE, 2006, 6027: 12471253.
[59] Wojtkowski M. High-speed optical coherence tomography: Basics and applications[J]. Applied Optics, 49, D30-D61(2010).
[60] [60] retzky P, Lindner M W, Herrmann J M, et al. Optical coherence tomography by spectral radar: dynamic range estimation invivo measurements of skin[C]Optical Imaging Techniques f Biomoniting IV. International Society f Optics Photonics, 1999, 3567: 7887.
[61] Leith E N, Swanson G J. Achromatic interferometers for white light optical processing and holography[J]. Applied Optics, 19, 638-644(1980).
[62] Dresel T, Häusler G, Venzke H. Three-dimensional sensing of rough surfaces by coherence radar[J]. Applied Optics, 31, 919-925(1992).
[63] [63] Willomitzer F, Li F, Balaji M M, et al. High resolution nonlineofsight imaging with superheterodyne remote digital holography[C]Computational Optical Sensing Imaging. Optical Society of America, 2019: CM2 A. 2.
[64] Ruffing B, Fleischer J. Spectral correlation of partially or fully developed speckle patterns generated by rough surfaces[J]. JOSA A, 2, 1637-1643(1985).
[65] Belmonte A. Statistical model for fading return signals in coherent lidars[J]. Applied Optics, 49, 6737-6748(2010).
[66] Zhou Hongqiang, Huang Lingling, Wang Yongtian. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 48, 1226004(2019).
[67] Rivenson Y, Zhang Y, Günaydın H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141-17141(2018).
[68] Wu Y, Rivenson Y, Zhang Y, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).
[69] Wang H, Lyu M, Situ G. EHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 26, 22603-22614(2018).
[70] Wang K, Dou J, Kemao Q, et al. Y-Net: A one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 44, 4765-4768(2019).
[71] Liu T, De Haan K, Rivenson Y, et al. Deep learning-based super-resolution in coherent imaging systems[J]. Scientific Reports, 9, 1-13(2019).
[72] Wang Fei, Wang Hao, Bian Yaoming, et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).
[73] [73] Dong S, Wang F, Wang H, et al. Learningbased shtcoherence digital holographic imaging through scattering media[C]AOPC 2020: Display Technology; Photonic MEMS, THz MEMS, Metamaterials; AI in Optics Photonics. SPIE, 2020, 11565: 206213.
[74] [74] Qianqian Z, Bo S, Chao W. Computational holographic imaging through scattering media using deep learning[C]2020 IEEE International Conference on Artificial Intelligence Computer Applications (ICAICA). IEEE, 2020: 258260.
Get Citation
Copy Citation Text
Jinpeng Liu, Yi Feng, Lei Liu, Meng Xiang, Fei Liu, Xiaopeng Shao. Research and application progress of holography technology in scattering imaging (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220307
Category: Special issue——Scattering imaging and non-line-of-sight imaging
Received: Apr. 29, 2022
Accepted: --
Published Online: Jan. 9, 2023
The Author Email: Xiaopeng Shao (xpshao@xidian.edu.cn)