Infrared Technology, Volume. 46, Issue 9, 1025(2024)

Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation

Guangxian XU, Zemin WANG*, and Fei MA
Author Affiliations
  • School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125100, China
  • show less
    References(35)

    [1] [1] Bioucas Dias J M, Plaza A, Camps Valls G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Trans. Geosci. Remote Sens., 2013, 1: 6-36.

    [2] [2] LI Hengchao, WANG Weiye, PAN Lei, et al. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 738-751.

    [3] [3] DIAN R, LI S, FANG L. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Trans. Neural Netw. Learn., Syst., 2019, 30(9): 2672-2683.

    [4] [4] Bioucas Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.

    [5] [5] ZHANG Pengdan, NING Jifeng. Hyperspectral image denoising via group sparsity regularized hybrid spatio-spectral total variation[J]. Remote. Sens., 2022, 14: 2348.

    [6] [6] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Trans. Image Process., 2006, 15(12): 3736-3745.

    [7] [7] Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65-74.

    [8] [8] Cands E J, LI X, MA Y, et al. Robust principal component analysis?[J]. J. ACM, 2011, 58: 1-37.

    [9] [9] GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 2862–2869.

    [10] [10] HE W, ZHANG H, ZHANG L, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens,. 2015, 8: 3050-3061.

    [11] [11] Karami A, Yazdi M, Asli A Z. Noise reduction of hyperspectral images using kernel non-negative tucker decomposition[J]. IEEE J. Sel. Topics Signal Process., 2011, 5(3): 487-493.

    [12] [12] FAN H, CHEN Y, GUO Y, et al. Hyperspectral image restoration using low-rank tensor recovery[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2017, 10(10): 4589-4604.

    [13] [13] HE W, ZHANG H, ZHANG L, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(1): 178-188.

    [14] [14] WANG Y, PENG J, ZHAO Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2018, 11(4): 1227-1243.

    [15] [15] FAN H, LI C, GUO Y, et al. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(10): 6196-6213.

    [16] [16] CHEN Y, HE W, Yokoya N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556-3570.

    [17] [17] SHI Q, TANG X, YANG T, et al. Hyperspectral image denoising using a 3-D attention denoising network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10348-10363.

    [18] [18] WANG Z, SHAO Z, HUANG X, et al. SSCAN: a spatial–spectral cross attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.

    [19] [19] ZHENG Y B, HUANG T Z, ZHAO X L, et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 734-749.

    [20] [20] Fazel M, Hindi H, Boyd S P. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices[C]//Proc. IEEE Amer. Control Conf., 2003, 3: 2156-2162.

    [21] [21] Mohan K, Fazel M. Iterative reweighted algorithms for matrix rank minimization[J]. J. Mach. Learn. Res., 2012, 13(1): 3441-3473.

    [22] [22] DENG Y, DAI Q, LIU R, et al. Low-rank structure learning via nonconvex heuristic recovery[J]. IEEE Trans. Neural Netw. Learn. Syst., 2013, 24(3): 383-396.

    [23] [23] DONG W, SHI G, HU X, et al. Nonlocal sparse and low-rank regularization for optical flow estimation[J]. IEEE Trans. Image Process., 2014, 23(10): 4527-4538.

    [24] [24] JI T Y, HUANG T Z, ZHAO X L, et al. A non-convex tensor rank approximation for tensor completion[J]. Applied Mathematical Modelling, 2017, 48: 410-422.

    [25] [25] Boyd S, Parikh N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Found. Trends Mach. Learn., 2011, 3(1): 1-122.

    [26] [26] ZHANG Z, LIU D, Aeron S, et al. An online tensor robust PCA algorithm for sequential 2D data[C]//Proc. Int. Conf. Acoust., Speech, Signal Process., 2016: 2434-2438.

    [27] [27] LU C, FENG J, CHEN Y, et al. Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 5249-5257.

    [28] [28] GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014: 2862-2869.

    [29] [29] Aggarwal H K, Majumdar A. Hyperspectral image denoising using spatio-spectral total variation[J]. IEEE Geosci. Remote Sens. Lett., 2016 13(3): 442-446.

    [30] [30] HE W, ZHANG H, SHEN H, et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 713-729.

    [31] [31] XIE Q, ZHAO Q, MENG D, et al., Multispectral images denoising by intrinsic tensor sparsity regularization[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016: 1692-1700.

    [32] [32] LIU Y Y, ZHAO X L, ZHENG Y B, et al. Hyperspectral image restoration by tensor fibered rank constrained optimization and plug-and-play regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.

    [33] [33] Eckstein J, YAO W. Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives[J]. Pacific Journal of Optimization, 2015, 11(4): 619-644.

    [34] [34] LUO Y S, ZHAO X L, JIANG T X, et al. Hyperspectral mixed noise removal via spatial-spectral constrained unsupervised deep image prior[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9435-9449.

    [35] [35] LAI Z, WEI K, FU Y. Deep plug-and-play prior for hyperspectral image restoration[J]. Neurocomputing, 2022, 481: 281-293.

    Tools

    Get Citation

    Copy Citation Text

    XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology, 2024, 46(9): 1025

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 15, 2023

    Accepted: Jan. 21, 2025

    Published Online: Jan. 21, 2025

    The Author Email: Zemin WANG (2370058920@qq.com)

    DOI:

    Topics