Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2530008(2025)

The advantage of MINFLUX nanoscopy in single molecular tracking within living cells

Huihui Zou, Shu Li, Xinlei Kou, Zelong Gu, and Jing Wang*
References(94)

[1] Q. Wang, W. E. Moerner. Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods, 11, 555-558(2014).

[2] W. E. Moerner. New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. USA, 104, 12596-12602(2007).

[3] H. P. Lu, L. Xun, X. S. Xie. Single-molecule enzymatic dynamics. Science, 282, 1877-1882(1998).

[4] J. Gelles, B. J. Schnapp, M. P. Sheetz. Tracking kinesin-driven movements with nanometre-scale precision. Nature, 331, 450-453(1988).

[5] A. Yildiz, J. N. Forkey, S. A. McKinney et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 300, 2061-2065(2003).

[6] R. D. Vale, T. Funatsu, D. W. Pierce et al. Direct observation of single kinesin molecules moving along microtubules. Nature, 380, 451-453(1996).

[7] G. M. Lee, A. Ishihara, K. A. Jacobson. Direct observation of Brownian motion of lipids in a membrane. Proc. Natl. Acad. Sci. USA, 88, 6274-6278(1991).

[8] T. Mori, R. D. Vale, M. Tomishige. How kinesin waits between steps. Nature, 450, 750-754(2007).

[9] A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa et al. Tracking single molecules at work in living cells. Nat. Chem. Biol., 10, 524-532(2014).

[10] M. de Brabander, R. Nuydens, A. Ishihara et al. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. J. Cell Biol., 112, 111-124(1991).

[11] G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys., 330, 377-445(1908).

[12] M. P. Sheetz, S. Turney, H. Qian et al. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature, 340, 284-288(1989).

[13] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787-2809(2004).

[14] E. Betzig, R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science, 262, 1422-1425(1993).

[15] G. J. Schütz, G. Kada, V. P. Pastushenko et al. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J., 19, 892-901(2000).

[16] T. Fujiwara, K. Ritchie, H. Murakoshi et al. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol., 157, 1071-1081(2002).

[17] G. Seisenberger, M. U. Ried, T. Endress et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science, 294, 1929-1932(2001).

[18] U. Kubitscheck, O. Kückmann, T. Kues et al. Imaging and tracking of single GFP molecules in solution. Biophys. J., 78, 2170-2179(2000).

[19] S. Lange, Y. Katayama, M. Schmid et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic, 9, 1256-1267(2008).

[20] Z. Liu, L. D. Lavis, E. Betzig. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell, 58, 644-659(2015).

[21] J. Blonk, A. Don, H. Van Aalst et al. Fluorescence photobleaching recovery in the confocal scanning light microscope. J. Microsc., 169, 363-374(1993).

[22] N. Lorén, J. Hagman, J. K. Jonasson et al. Fluorescence recovery after photobleaching in material and life sciences: Putting theory into practice. Q. Rev. Biophys., 48, 323-387(2015).

[23] M. A. Medina, P. Schwille. Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays, 24, 758-764(2002).

[24] T. Saito, D. Matsunaga, T. S. Matsui et al. Determining the domain-level reaction-diffusion properties of an actin-binding protein transgelin-2 within cells. Exp. Cell Res., 404, 112619(2021).

[25] Y. Chen, B. C. Lagerholm, B. Yang et al. Methods to measure the lateral diffusion of membrane lipids and proteins. Methods, 39, 147-153(2006).

[26] M. E. van Royen, P. Farla, K. A. Mattern et al. Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. Methods Mol. Biol., 464, 363-385(2009).

[27] W. W. Webb. Fluorescence correlation spectroscopy: Inception, biophysical experimentations, and prospectus. Appl. Opt., 40, 3969-3983(2001).

[28] S. Maiti, U. Haupts, W. W. Webb. Fluorescence correlation spectroscopy: Diagnostics for sparse molecules. Proc. Natl. Acad. Sci. USA, 94, 11753-11757(1997).

[29] D. Magde, E. L. Elson, W. W. Webb. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers, 13, 29-61(1974).

[30] M. Ehrenberg, R. Rigler. Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q. Rev. Biophys., 9, 69-81(1976).

[31] M. Weissman, H. Schindler, G. Feher. Determination of molecular weights by fluctuation spectroscopy: Application to DNA. Proc. Natl. Acad. Sci. USA, 73, 2776-2780(1976).

[32] A. A. de Thomaz, D. B. Almeida, C. L. Cesar. Measuring the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy. Methods Mol. Biol., 1199, 85-91(2014).

[33] M. A. Digman, C. M. Brown, P. Sengupta et al. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J., 89, 1317-1327(2005).

[34] T. Weidemann. Application of fluorescence correlation spectroscopy (FCS) to measure the dynamics of fluorescent proteins in living cells. Methods Mol. Biol., 1076, 539-555(2014).

[35] N. Hiramoto-Yamaki, K. A. Tanaka, K. G. Suzuki et al. Ultrafast diffusion of a fluorescent cholesterol analog in compartmentalized plasma membranes. Traffic, 15, 583-612(2014).

[36] J. Chao, S. Ram, T. Lee et al. Investigation of the numerics of point spread function integration in single molecule localization. Opt. Express, 23, 16866-16883(2015).

[37] D. Bouchet, V. Krachmalnicoff, I. Izeddin. Cramér-Rao analysis of lifetime estimations in time-resolved fluorescence microscopy. Opt. Express, 27, 21239-21252(2019).

[38] S. Cavassila, S. Deval, C. Huegen et al. Cramér–Rao bounds: An evaluation tool for quantitation. NMR Biomed., 14, 278-283(2001).

[39] I. Sase, H. Miyata, J. E. Corrie et al. Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys. J., 69, 323-328(1995).

[40] M. Tokunaga, N. Imamoto, K. Sakata-Sogawa. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods, 5, 159-161(2008).

[41] T. Funatsu, Y. Harada, M. Tokunaga et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 374, 555-559(1995).

[42] C. Yi, L. Zhu, D. Li et al. Light field microscopy in biological imaging. J. Innov. Opt. Health Sci., 16, 2230017(2023).

[43] S. T. Hess, T. P. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

[44] E. Betzig, G. H. Patterson, R. Sougrat et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

[45] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).

[46] A. Sharonov, R. M. Hochstrasser. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA, 103, 18911-18916(2006).

[47] E. Semenova, M. L. Guerriero, B. Zhang et al. Flexible fitting of PROTAC concentration–response curves with changepoint Gaussian processes. SLAS Discov., 26, 1212-1224(2021).

[48] F. Schneider, D. Waithe, S. Galiani et al. Nanoscale spatiotemporal diffusion modes measured by simultaneous confocal and stimulated emission depletion nanoscopy imaging. Nano Lett., 18, 4233-4240(2018).

[49] E. Gratton, N. P. Barry, S. Beretta et al. Multiphoton fluorescence microscopy. Methods, 25, 103-110(2001).

[50] K. I. Willig, J. Keller, M. Bossi et al. STED microscopy resolves nanoparticle assemblies. New J. Phys., 8, 106(2006).

[51] D. Axelrod, D. E. Koppel, J. Schlessinger et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J., 16, 1055-1069(1976).

[52] K. M. Berland. Fluorescence correlation spectroscopy: A new tool for quantification of molecular interactions. Methods Mol. Biol., 261, 383-398(2004).

[53] H. Bischof, S. Burgstaller, M. Waldeck-Weiermair et al. Live-cell imaging of physiologically relevant metal ions using genetically encoded FRET-based probes. Cells, 8, 492(2019).

[54] H. Murakoshi, R. Iino, T. Kobayashi et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. USA, 101, 7317-7322(2004).

[55] M. H. Ulbrich, E. Y. Isacoff. Subunit counting in membrane-bound proteins. Nat. Methods, 4, 319-321(2007).

[56] J. Elf, G. W. Li, X. S. Xie. Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191-1194(2007).

[57] T. Perera, H. Gunasekara, Y. S. Hu. Single-molecule localization microscopy using time-lapse imaging of single-antibody labeling. Curr. Protoc., 3, e908(2023).

[58] H. Gunasekara, T. Perera, J. Anderson et al. Superresolution imaging with single-antibody labeling. Bioconjug. Chem., 34, 825-833(2023).

[59] T. L. Kirley, K. D. Greis, A. B. Norman. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments. Biochem. Biophys. Res. Commun., 480, 752-757(2016).

[60] S. Tateo, H. Shinchi, H. Matsumoto et al. Optimized immobilization of single chain variable fragment antibody onto non-toxic fluorescent nanoparticles for efficient preparation of a bioprobe. Colloids Surf. B, Biointerfaces, 224, 113192(2023).

[61] L. Teodori, M. Omer, A. Märcher et al. Site-specific nanobody-oligonucleotide conjugation for super-resolution imaging. J. Biol. Methods, 9, e159(2022).

[62] K. H. Lim, H. Huang, A. Pralle et al. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol. Bioeng., 110, 57-67(2013).

[63] Y. Luo, S. Zhou, M. Gong et al. Clickable HaloTag ligands for live cell labeling and imaging. J. Innov. Opt. Health Sci., 2441003(2024).

[64] A. C. Krüger. Interdiciplinary Nanoscience Center iNANO, Single-molecule FRET microscopy and application to telomeric DNA, Progress Report(2006).

[65] S. Weisenburger, B. Jing, A. Renn, V. Sandoghdar. Cryogenic localization of single molecules with Angstrom precision. Nanoimag. Nanospectrosc., 8815, 18-26(2013).

[66] M. M. Perfilov, A. S. Gavrikov, K. A. Lukyanov et al. Transient fluorescence labeling: Low affinity —high benefits. Int. J. Mol. Sci., 22, 11799(2021).

[67] L. Lauritsen, M. Szomek, M. Hornum et al. Ratiometric fluorescence nanoscopy and lifetime imaging of novel Nile Red analogs for analysis of membrane packing in living cells. Sci. Rep., 14, 13748(2024).

[68] Y. Zhang, A. Padhyay, J. E. Sevilleja et al. Interactions of fluorophores with iron nanoparticles: Metal-enhanced fluorescence. J. Phys. Chem. C, 114, 7575-7581(2010).

[69] G. S. Harms, L. Cognet, P. H. Lommerse et al. Autofluorescent proteins in single-molecule research: Applications to live cell imaging microscopy. Biophys. J., 80, 2396-2408(2001).

[70] J. J. Han, C. Kiss, A. R. Bradbury et al. Time-resolved, confocal single-molecule tracking of individual organic dyes and fluorescent proteins in three dimensions. ACS Nano, 6, 8922-8932(2012).

[71] K. He, W. Luo, Y. Zhang et al. Intercellular transportation of quantum dots mediated by membrane nanotubes. ACS Nano, 4, 3015-3022(2010).

[72] Y. Gao, C. Zhang, L. Zhu et al. Ultrabright quantum dots assisted in vivo NIR-II fluorescence microscopic imaging for brain metastases in triple-negative breast cancer. J. Innov. Opt. Health Sci., 2441001(2024).

[73] S. Haziza, N. Mohan, Y. Loe-Mie et al. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol., 12, 322-328(2017).

[74] S. L. Liu, Z. G. Wang, Z. L. Zhang et al. Tracking single viruses infecting their host cells using quantum dots. Chem. Soc. Rev., 45, 1211-1224(2016).

[75] W. W. Hsiao, Y. Y. Hui, P. C. Tsai et al. Fluorescent nanodiamond: A versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res., 49, 400-407(2016).

[76] F. Balzarotti, Y. Eilers, K. C. Gwosch et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).

[77] R. Schmidt, T. Weihs, C. A. Wurm et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun., 12, 1478(2021).

[78] K. C. Gwosch, J. K. Pape, F. Balzarotti et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods, 17, 217-224(2020).

[79] J. O. Wirth, L. Scheiderer, T. Engelhardt et al. MINFLUX dissects the unimpeded walking of kinesin-1. Science, 379, 1004-1010(2023).

[80] M. Salerno, V. Bazzurro, E. Angeli et al. MINFLUX nanoscopy: A “brilliant” technique promising major breakthrough. Microsc. Res. Tech., 88, 1264-1272(2025).

[81] S. Liu, P. Hoess, J. Ries. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys., 51, 301-326(2022).

[82] Y. Eilers, H. Ta, K. C. Gwosch et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl. Acad. Sci. USA, 115, 6117-6122(2018).

[83] A. Mizrak, J. Kaestel-Hansen, J. Matthias et al. Single-molecule analysis of protein targeting from the endoplasmic reticulum to lipid droplets(2024).

[84] R. D. Vale, T. S. Reese, M. P. Sheetz. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell, 42, 39-50(1985).

[85] J. Howard, A. J. Hudspeth, R. D. Vale. Movement of microtubules by single kinesin molecules. Nature, 342, 154-158(1989).

[86] A. Carsten, A. V. Failla, M. Aepfelbacher. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J. Microsc., 298, 219-231(2025).

[87] J. Slivka, E. Gleave, D. P. Wijewardena et al. Stepping dynamics of dynein characterized by MINFLUX(2024).

[88] X. Zhang, L. Ma, Y. Zhang. High-resolution optical tweezers for single-molecule manipulation. Yale J. Biol. Med., 86, 367-383(2013).

[89] W. Du, Q. P. Su. Single-molecule in vitro reconstitution assay for kinesin-1-driven membrane dynamics. Biophys. Rev., 11, 319-325(2019).

[90] J. Grawenhoff, S. Baumann, S. P. Maurer. In vitro reconstitution of kinesin-based, axonal mRNA transport. Methods Mol. Biol., 2431, 547-568(2022).

[91] T. Deguchi, M. K. Iwanski, E. M. Schentarra et al. Direct observation of motor protein stepping in living cells using MINFLUX. Science, 379, 1010-1015(2023).

[92] A. Yildiz, M. Tomishige, R. D. Vale et al. Kinesin walks hand-over-hand. Science, 303, 676-678(2004).

[93] L. Scheiderer, J. O. Wirth, M. Tarnawski et al. Dual-color MINFLUX: Kinesin-1 takes chassé-inchworm steps(2024).

[94] J. M. Schleske, J. Hubrich, J. O. Wirth et al. MINFLUX reveals dynein stepping in live neurons. Proc. Natl. Acad. Sci. USA, 121, e2412241121(2024).

Tools

Get Citation

Copy Citation Text

Huihui Zou, Shu Li, Xinlei Kou, Zelong Gu, Jing Wang. The advantage of MINFLUX nanoscopy in single molecular tracking within living cells[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2530008

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Feb. 9, 2025

Accepted: Mar. 28, 2025

Published Online: Aug. 27, 2025

The Author Email: Jing Wang (wangj@usst.edu.cn)

DOI:10.1142/S1793545825300083

Topics