Opto-Electronic Engineering, Volume. 45, Issue 8, 180030(2018)
TLD target tracking algorithm based on dynamic capture
[1] [1] Cheng W L, Wang X J, Wan Z J, et al. Research and implementation of target tracking algorithm in compression domain on miniaturized DSP platform[J]. Opto-Electronic Engineering, 2017, 44(10): 972–982.
[2] [2] Henriques J F, Rui C, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596.
[3] [3] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4293–4302.
[4] [4] Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL]. https://arxiv.org/abs/ 1608.07242v1, 2016.
[5] [5] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409–1422.
[6] [6] Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 263–270.
[7] [7] Brox T, Bruhn A, Papenberg N, et al. High accuracy optical flow estimation based on a theory for warping[C]//Proceedings of 2004 Computer Vision-ECCV. Berlin, Heidelberg: Springer, 2004: 25–36.
[8] [8] Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: automatic detection of tracking failures[C]//Proceedings of 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010: 2756–2759.
[9] [9] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2003.
[10] [10] Kalal Z, Matas J, Mikolajczyk K. P-N learning: bootstrapping binary classifiers by structural constraints[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2014: 49–56.
[11] [11] Jiang B. Research on TLD algorithm based on Kalman filter[D]. Xi’an: Xi’an University of Science and Technology, 2013.
[12] [12] Wang M J, Wu X J. New IMM smoothing algorithm suitable for nonlinear maneuvering target tracking[J]. Opto-Electronic Engineering, 2016, 43(10): 18–24.
[13] [13] Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848.
Get Citation
Copy Citation Text
He Junheng, Liu Shu, Di Hongwei. TLD target tracking algorithm based on dynamic capture[J]. Opto-Electronic Engineering, 2018, 45(8): 180030
Category: Article
Received: Jan. 18, 2018
Accepted: --
Published Online: Aug. 25, 2018
The Author Email: He Junheng (hjh381@163.com)