NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040008(2023)
Progress on QCD properties in strong magnetic fields from lattice QCD
[1] Kharzeev D E, Liao J F. Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions[J]. Nature Reviews Physics, 3, 55-63(2021).
[2] Kharzeev D E, McLerran L D, Warringa H J. The effects of topological charge change in heavy ion collisions: "Event by event and violation"[J]. Nuclear Physics A, 803, 227-253(2008).
[3] Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 24, 5925-5932(2009).
[4] Deng W T, Huang X G. Event-by-event generation of electromagnetic fields in heavy-ion collisions[J]. Physical Review C, 85, 044907(2012).
[5] Vachaspati T. Magnetic fields from cosmological phase transitions[J]. Physics Letters B, 265, 258-261(1991).
[6] Duncan R C, Thompson C. Formation of very strongly magnetized neutron stars - implications for gamma-ray bursts[J]. The Astrophysical Journal Letters, 392, L9(1992).
[7] Kharzeev D E, Liao J. Isobar collisions at RHIC to test local parity violation in strong interactions[J]. Nuclear Physics News, 29, 26-31(2019).
[8] Abdallah M, Aboona B, Adam J et al. Search for the chiral magnetic effect with isobar collisions at sNN=200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 105, 014901(2022).
[10] Kharzeev D E, Liao J F, Shi S Z. Implications of the isobar-run results for the chiral magnetic effect in heavy-ion collisions[J]. Physical Review C, 106, L051903(2022).
[11] Wang F. CME experimental results and interpretation[J]. Acta Physica Polonica B, Proceedings Supplement, 16, 15(2023).
[12] Ding H T, Karsch F, Mukherjee S. Thermodynamics of strong-interaction matter from lattice QCD[J]. International Journal of Modern Physics E, 24, 1530007(2015).
[13] Ding H T, Li S T, Mukherjee S et al. Correlated Dirac eigenvalues and axial anomaly in chiral symmetric QCD[J]. Physical Review Letters, 126, 082001(2021).
[14] Wang Z Y, Zhao J X, Greiner C et al. Incomplete electromagnetic response of hot QCD matter[J]. Physical Review C, 105, L041901(2022).
[15] Yamamoto A. Overview of external electromagnetism and rotation in lattice QCD[J]. The European Physical Journal A, 57, 211(2021).
[16] D'Elia M. Lattice QCD in background fields[J]. Journal of Physics: Conference Series, 432, 012004(2013).
[17] Endrodi G. QCD in magnetic fields: from Hofstadter's butterfly to the phase diagram[J]. PoS LATTICE, 2014, 018(2014).
[18] D'Elia M, Mukherjee S, Sanfilippo F. QCD phase transition in a strong magnetic background[J]. Physical Review D, 82, 051501(2010).
[19] Bali G S, Bruckmann F, Endrodi G et al. The QCD phase diagram for external magnetic fields[J]. Journal of High Energy Physics, 2012, 044(2012).
[20] Ding H T, Schmidt C, Tomiya A et al. Chiral phase structure of three flavor QCD in a background magnetic field[J]. Physical Review D, 102, 054505(2020).
[21] Ding H T, Li S T, Tomiya A et al. Chiral properties of (2+1)-flavor QCD in strong magnetic fields at zero temperature[J]. Physical Review D, 104, 014505(2021).
[22] D'Elia M, Maio L, Sanfilippo F et al. Phase diagram of QCD in a magnetic background[J]. Physical Review D, 105, 034511(2022).
[23] Luschevskaya E V, Solovjeva O E, Teryaev O V. Magnetic polarizability of pion[J]. Physics Letters B, 761, 393-398(2016).
[24] Bali G S, Brandt B B, Endrődi G et al. Meson masses in electromagnetic fields with Wilson fermions[J]. Physical Review D, 97, 034505(2018).
[25] Luschevskaya E V, Solovjeva O E, Kochetkov O A et al. Magnetic polarizabilities of light mesons in SU(3) lattice gauge theory[J]. Nuclear Physics B, 898, 627-643(2015).
[26] Lin F, Xu K, Huang M. Magnetism of QCD matter and the pion mass from tensor-type spin polarization and the anomalous magnetic moment of quarks[J]. Physical Review D, 106, 016005(2022).
[28] Sheng B K, Wang Y Y, Wang X Y et al. Pole and screening masses of neutral pions in a hot and magnetized medium: a comprehensive study in the Nambu-Jona-Lasinio model[J]. Physical Review D, 103, 094001(2021).
[29] Li J N, Cao G Q, He L Y. Gauge independence of pion masses in a magnetic field within the Nambu-Jona-Lasinio model[J]. Physical Review D, 104, 074026(2021).
[31] Miransky V A, Shovkovy I A. Magnetic catalysis and anisotropic confinement in QCD[J]. Physical Review D, 66, 045006(2002).
[32] Bali G S, Bruckmann F, Endrődi G et al. QCD quark condensate in external magnetic fields[J]. Physical Review D, 86, 071502(2012).
[33] Ding H T, Li S T, Liu J H et al. Chiral condensates and screening masses of neutral pseudoscalar mesons in thermomagnetic QCD medium[J]. Physical Review D, 105, 034514(2022).
[34] Endrődi G, Giordano M, Katz S D et al. Magnetic catalysis and inverse catalysis for heavy pions[J]. Journal of High Energy Physics, 2019, 7(2019).
[35] D'Elia M, Manigrasso F, Negro F et al. QCD phase diagram in a magnetic background for different values of the pion mass[J]. Physical Review D, 98, 054509(2018).
[36] Li S T, Ding H T. Chiral crossover and chiral phase transition temperatures from lattice QCD[J]. Nuclear Physics Review, 37, 674-678(2020).
[37] Ding H T, Hegde P, Kaczmarek O et al. Chiral phase transition temperature in (2+1)-flavor QCD[J]. Physical Review Letters, 123, 062002(2019).
[38] Kotov A Y, Lombardo M P, Trunin A. QCD transition at the physical point, and its scaling window from twisted mass Wilson fermions[J]. Physics Letters B, 823, 136749(2021).
[39] Ding H T, Li S T, Shi Q et al. QCD phase structure in strong magnetic fields[J]. Acta Physica Polonica B Proceedings Supplement, 14, 403(2021).
[40] D'Elia M, Negro F. Chiral properties of strong interactions in a magnetic background[J]. Physical Review D, 83, 114028(2011).
[41] Bruckmann F, Endrődi G, Kovács T G. Inverse magnetic catalysis and the Polyakov loop[J]. Journal of High Energy Physics, 2013, 112(2013).
[42] CAO Gaoqing. Extremely strong magnetic field and QCD phase diagram[J]. Nuclear Techniques, 46, 040003(2023).
[43] XU Kun, HUANG Mei. QCD critical end point and baryon number fluctuation[J]. Nuclear Techniques, 46, 040005(2023).
[44] WU Shanjin, SONG Huichao. Critical dynamical fluctuations near the QCD critical point[J]. Nuclear Techniques, 46, 040004(2023).
[45] WU Yuanfang, LI Xiaobing, CHEN Lizhu et al. Several problems in determining the QCD phase boundary by relativistic heavy ion collisions[J]. Nuclear Techniques, 46, 040006(2023).
[46] ZHU Zhourun, ZHAO Yanqing, HOU Defu. QCD phase structure from holographic models[J]. Nuclear Techniques, 46, 040007(2023).
[47] DU Yilun, LI Chengming, SHI Chao et al. Review of QCD phase diagram analysis using effective field theories[J]. Nuclear Techniques, 46, 040009(2023).
[48] YIN Yi. The BEST framework for exploring the QCD phase diagram: progress summary[J]. Nuclear Techniques, 46, 040010(2023).
[49] YIN Shi, TAN Yangyang, FU Weijie. Critical phenomena and functional renormalization group[J]. Nuclear Techniques, 46, 040002(2023).
[50] Allton C R, Ejiri S, Hands S J et al. QCD thermal phase transition in the presence of a small chemical potential[J]. Physical Review D, 66, 074507(2002).
[51] Gavai R V, Gupta S. Pressure and nonlinear susceptibilities in QCD at finite chemical potentials[J]. Physical Review D, 68, 034506(2003).
[52] Ding H T, Li S T, Shi Q et al. Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field[J]. The European Physical Journal A, 57, 202(2021).
[54] Endrödi G. Critical point in the QCD phase diagram for extremely strong background magnetic fields[J]. Journal of High Energy Physics, 2015, 173(2015).
[55] Endrődi G, Markó G. Magnetized baryons and the QCD phase diagram: NJL model meets the lattice[J]. Journal of High Energy Physics, 2019, 36(2019).
[56] Ding H T, Schmidt C, Tomiya A et al. Chiral phase structure of three flavor QCD in a background magnetic field[J]. Physical Review D, 102, 054505(2020).
[57] Bali G S, Bruckmann F, Endrődi G et al. The QCD equation of state in background magnetic fields[J]. Journal of High Energy Physics, 2014, 177(2014).
[58] Endrődi G. QCD equation of state at nonzero magnetic fields in the Hadron Resonance Gas model[J]. Journal of High Energy Physics, 2013, 23(2013).
[59] Bali G S, Endrődi G, Piemonte S. Magnetic susceptibility of QCD matter and its decomposition from the lattice[J]. Journal of High Energy Physics, 2020, 183(2020).
[60] Bali G S, Bruckmann F, Endrődi G et al. Paramagnetic squeezing of QCD matter[J]. Physical Review Letters, 112, 042301(2014).
[61] Astrakhantsev N, Braguta V V, D'Elia M et al. Lattice study of the electromagnetic conductivity of the quark-gluon plasma in an external magnetic field[J]. Physical Review D, 102, 054516(2020).
[62] Bonati C, D'Elia M, Mariti M et al. Magnetic field effects on the static quark potential at zero and finite temperature[J]. Physical Review D, 94, 094007(2016).
[63] Bonati C, D'Elia M, Mariti M et al. Anisotropy of the quark-antiquark potential in a magnetic field[J]. Physical Review D, 89, 114502(2014).
[64] D'Elia M, Maio L, Sanfilippo F et al. Confining and chiral properties of QCD in extremely strong magnetic fields[J]. Physical Review D, 104, 114512(2021).
[65] Braguta V V, Chernodub M N, Kotov A Y et al. Finite-density QCD transition in a magnetic background field[J]. Physical Review D, 100, 114503(2019).
Get Citation
Copy Citation Text
Hengtong DING, Shengtai LI, Junhong LIU. Progress on QCD properties in strong magnetic fields from lattice QCD[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040008
Category: Research Articles
Received: Dec. 30, 2022
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: