Chinese Journal of Lasers, Volume. 50, Issue 14, 1401005(2023)

Research on Thermal Control Technology of Spaceborne LiDAR Laser

Yuan Wan1,3, Han Cheng2, Jiamin Du2, Jie Meng1, Kedi Xie1,3, Mingjian Wang1, Xiuhua Ma1, Jiqiao Liu1,3, Xia Hou1,3、*, and Weibiao Chen1,3
Author Affiliations
  • 1Space Laser Engineering Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Shanghai Institute of Satellite Engineering, Shanghai 201109, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(17)
    Principle and composition of laser
    Laser configuration layout
    LD life curve
    Schematic of laser thermal control layout
    Model of laser thermal control system
    Structural diagram of radiator
    Finite element model of thermal control system
    Average external heat flux in one year
    Temperature cloud diagrams of system. (a) High temperature condition; (b) low temperature condition
    Schematic of thermal vacuum test
    Temperature curves in thermal vacuum test
    On-orbit temperature telemetry of laser. (a) Before commissioning; (b) after commissioning
    • Table 1. Power consumption of laser internal heat source

      View table

      Table 1. Power consumption of laser internal heat source

      ModuleBeginning-of-life power consumption /WEnd-of-life power consumption /W
      Preamplifier3033
      Power amplifier 15055
      Power amplifier 297106
      Power amplifier 392102
    • Table 2. Thermal control indexes of lasers

      View table

      Table 2. Thermal control indexes of lasers

      ModuleTemperature /℃Temperature fluctuation /℃
      Support structure20±5±1
      Amplifier≤28±1
    • Table 3. Simulation parameters of laser under high and low temperature conditions

      View table

      Table 3. Simulation parameters of laser under high and low temperature conditions

      Working conditionDate

      Solar constant /

      (W/m2

      Albedo of

      Earth

      Coating statusLaser power consumption /W
      High temperature conditionJune 23rd14140.35End of life296
      Low temperature conditionNovember 25th13220.3Beginning of life269
    • Table 4. Simulation results

      View table

      Table 4. Simulation results

      Working condition

      Laser shell

      temperature /℃

      Shell temperature

      fluctuation /℃

      Amplifier

      temperature /℃

      Amplifier temperature

      fluctuation /℃

      High temperature condition18.4-22.30.220.8-25.80.18
      Low temperature condition18.1-21.70.1222.3-24.80.1
    • Table 5. On-orbit thermal control performances

      View table

      Table 5. On-orbit thermal control performances

      Parameter

      Laser shell

      temperature /℃

      Shell temperature

      fluctuation /℃

      Amplifier

      temperature /℃

      Amplifier temperature

      fluctuation /℃

      Value20.1-22.10.03323.1-25.90.01
    Tools

    Get Citation

    Copy Citation Text

    Yuan Wan, Han Cheng, Jiamin Du, Jie Meng, Kedi Xie, Mingjian Wang, Xiuhua Ma, Jiqiao Liu, Xia Hou, Weibiao Chen. Research on Thermal Control Technology of Spaceborne LiDAR Laser[J]. Chinese Journal of Lasers, 2023, 50(14): 1401005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 28, 2022

    Accepted: Mar. 30, 2023

    Published Online: Jul. 10, 2023

    The Author Email: Hou Xia (hou_xia@siom.ac.cn)

    DOI:10.3788/CJL221567

    Topics