China Oncology, Volume. 35, Issue 7, 710(2025)

Expert consensus on BRCA1/2 gene testing and clinical application in Chinese breast cancer patients (2025 edition)

WANG Hongxia1,2,3、*, YIN Yongmei1,2,3, and HU Xichun1,2,3
Author Affiliations
  • 1Committee of Breast Cancer Society, Chinese Anti-Cancer Association
  • 2Clinical Precision Medicine Professional Committee, Chinese Medical Doctor Association
  • 3Tumor Heterogeneity and Personalized Therapy Professional Committee, Chinese Anti-Cancer Association
  • show less
    References(151)

    [1] [1] HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.

    [3] [3] QIAN X Y, ZOU X N, XIU M, et al. Epidemiology and clinicopathologic features of breast cancer in China and the United States[J]. Transl Cancer Res, 2023, 12(7): 1826-1835.

    [4] [4] HONG R X, XU B H. Breast cancer: an up-to-date review and future perspectives[J]. Cancer Commun (Lond), 2022, 42(10): 913-936.

    [5] [5] YOSHIMURA A, IMOTO I, IWATA H. Functions of breast cancer predisposition genes: implications for clinical management[J]. Int J Mol Sci, 2022, 23(13): 7481.

    [6] [6] EL KHOURY C J, ADIB S M, CHAAYA M, et al. Trends in breast cancer staging at diagnosis associated with screening campaigns in Lebanon[J]. Womens Health Rep (New Rochelle), 2020, 1(1): 521-528.

    [7] [7] POHL-RESCIGNO E, HAUKE J, LOIBL S, et al. Association of germline variant status with therapy response in highrisk early-stage breast cancer: a secondary analysis of the GeparOcto randomized clinical trial[J]. JAMA Oncol, 2020, 6(5): 744-748.

    [8] [8] ROWLANDS C F, ALLEN S, BALMAA J, et al. Population-based germline breast cancer gene association studies and meta-analysis to inform wider mainstream testing[J]. Ann Oncol, 2024, 35(10): 892-901.

    [9] [9] HU C L, HART S N, GNANAOLIVU R, et al. A population-based study of genes previously implicated in breast cancer[J]. N Engl J Med, 2021, 384(5): 440-451.

    [10] [10] CONSORTIUM B C A. Breast cancer risk genes: association analysis in more than 113 000 women[J]. N Engl J Med, 2021, 384(5): 428-439.

    [11] [11] MIKI Y, SWENSEN J, SHATTUCK-EIDENS D, et al. A strong candidate for the breast and ovarian cancer susceptibility geneBRCA1[J]. Science, 1994, 266(5182): 66-71.

    [12] [12] WOOSTER R, BIGNELL G, LANCASTER J, et al. Identification of the breast cancer susceptibility geneBRCA2[J]. Nature, 1995, 378(6559): 789-792.

    [13] [13] DIAS NUNES J, DEMEESTERE I, DEVOS M.BRCAmutations and fertility preservation[J]. Int J Mol Sci, 2023, 25(1): 204.

    [14] [14] DEVICO MARCIANO N, KROENING G, DAYYANI F, et al.BRCA-mutated pancreatic cancer: from discovery to novel treatment paradigms[J]. Cancers (Basel), 2022, 14(10): 2453.

    [15] [15] Chahat, NAINWAL N, MURTI Y, et al. Advancements in targeting tumor suppressor genes (p53 andBRCA1/2) in breast cancer therapy[J]. Mol Divers, 2025, 29(3): 2691-2716.

    [17] [17] SZENTMARTONI G, MHL D, CSANDA R, et al. Predictive value and therapeutic significance of somaticBRCAmutation in solid tumors[J]. Biomedicines, 2024, 12(3): 593.

    [18] [18] WHILEY P J, GUIDUGLI L, WALKER L C, et al. Splicing and multifactorial analysis of intronicBRCA1andBRCA2sequence variants identifies clinically significant splicing aberrations up to 12 nucleotides from the intron/exon boundary[J]. Hum Mutat, 2011, 32(6): 678-687.

    [19] [19] THOMASSEN M, GERDES A M, CRUGER D, et al. Low frequency of large genomic rearrangements ofBRCA1andBRCA2in western Denmark[J]. Cancer Genet Cytogenet, 2006, 168(2): 168-171.

    [20] [20] FOULKES W D. Inherited susceptibility to common cancers[J]. N Engl J Med, 2008, 359(20): 2143-2153.

    [21] [21] METCALFE K A, POLL A, ROYER R, et al. Screening for founder mutations inBRCA1andBRCA2in unselected Jewish women[J]. J Clin Oncol, 2010, 28(3): 387-391.

    [22] [22] SUN J, MENG H, YAO L, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients[J]. Clin Cancer Res, 2017, 23(20): 6113-6119.

    [24] [24] FAN Y, HE L J, WANG Y, et al. CLIP4 shows putative tumor suppressor characteristics in breast cancer: an integrated analysis[J]. Front Mol Biosci, 2021, 7: 616190.

    [25] [25] PONTI G, DE ANGELIS C, PONTI R, et al. Hereditary breast and ovarian cancer: from genes to molecular targeted therapies[J]. Crit Rev Clin Lab Sci, 2023, 60(8): 640-650.

    [26] [26] CHENG H H, SHEVACH J W, CASTRO E, et al.BRCA1,BRCA2, and associated cancer risks and management for male patients: a review[J]. JAMA Oncol, 2024, 10(9): 1272-1281.

    [27] [27] FENG Z W, YANG X B, TIAN M W, et al.BRCAgenes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis[J]. BMC Cancer, 2023, 23(1): 807.

    [28] [28] NAROD S A, METCALFE K, FINCH A, et al. The risk of skin cancer in women who carryBRCA1orBRCA2mutations[J]. Hered Cancer Clin Pract, 2024, 22(1): 7.

    [29] [29] CHEN S N, PARMIGIANI G. Meta-analysis ofBRCA1andBRCA2penetrance[J]. J Clin Oncol, 2007, 25(11): 1329-1333.

    [30] [30] MAVADDAT N, PEOCK S, FROST D, et al. Cancer risks forBRCA1andBRCA2mutation carriers: results from prospective analysis of EMBRACE[J]. J Natl Cancer Inst, 2013, 105(11): 812-822.

    [31] [31] KUCHENBAECKER K B, HOPPER J L, BARNES D R, et al. Risks of breast, ovarian, and contralateral breast cancer forBRCA1andBRCA2mutation carriers[J]. JAMA, 2017, 317(23): 2402-2416.

    [32] [32] REBBECK T R, MITRA N, WAN F, et al. Association of type and location ofBRCA1andBRCA2mutations with risk of breast and ovarian cancer[J]. JAMA, 2015, 313(13): 1347-1361.

    [33] [33] BARNES D R, SILVESTRI V, LESLIE G, et al. Breast and prostate cancer risks for maleBRCA1andBRCA2pathogenic variant carriers using polygenic risk scores[J]. J Natl Cancer Inst, 2022, 114(1): 109-122.

    [34] [34] YAO L, SUN J, ZHANG J, et al. Breast cancer risk in Chinese women withBRCA1orBRCA2mutations[J]. Breast Cancer Res Treat, 2016, 156(3): 441-445.

    [35] [35] WINTER C, NILSSON M P, OLSSON E, et al. Targeted sequencing ofBRCA1andBRCA2across a large unselected breast cancer cohort suggests that one-third of mutations are somatic[J]. Ann Oncol, 2016, 27(8): 1532-1538.

    [36] [36] ATCHLEY D P, ALBARRACIN C T, LOPEZ A, et al. Clinical and pathologic characteristics of patients withBRCA-positive andBRCA-negative breast cancer[J]. J Clin Oncol, 2008, 26(26): 4282-4288.

    [37] [37] MAVADDAT N, BARROWDALE D, ANDRULIS I L, et al. Pathology of breast and ovarian cancers amongBRCA1andBRCA2mutation carriers: results from the Consortium of Investigators of Modifiers ofBRCA1/2(CIMBA)[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21(1): 134-147.

    [38] [38] COUCH F J, HART S N, SHARMA P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triplenegative breast cancer cohort unselected for family history of breast cancer[J]. J Clin Oncol, 2015, 33(4): 304-311.

    [39] [39] JIANG M L, JIA K Y, WANG L, et al. Alterations of DNA damage response pathway: biomarker and therapeutic strategy for cancer immunotherapy[J]. Acta Pharm Sin B, 2021, 11(10): 2983-2994.

    [40] [40] PARKES E E, WALKER S M, TAGGART L E, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer[J]. J Natl Cancer Inst, 2016, 109(1): djw199.

    [41] [41] LORD C J, ASHWORTH A. PARP inhibitors: synthetic lethality in the clinic[J]. Science, 2017, 355(6330): 1152-1158.

    [42] [42] FORMENT J V, O'CONNOR M J. Targeting the replication stress response in cancer[J]. Pharmacol Ther, 2018, 188: 155-167.

    [43] [43] DOMCHEK S M, POSTEL-VINAY S, IM S A, et al. Olaparib and durvalumab in patients with germlineBRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study[J]. Lancet Oncol, 2020, 21(9): 1155-1164.

    [44] [44] LORD C J, ASHWORTH A.BRCAness revisited[J]. Nat Rev Cancer, 2016, 16(2): 110-120.

    [45] [45] National Comprehensive Cancer Network. NCCN guidelines: prostate cancer (version 2. 2025)[EB/OL]. [2025-07-14]. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459.

    [46] [46] BORDELEAU L, PANCHAL S, GOODWIN P. Prognosis ofBRCA-associated breast cancer: a summary of evidence[J]. Breast Cancer Res Treat, 2010, 119(1): 13-24.

    [47] [47] VERHOOG L C, BERNS E M, BREKELMANS C T, et al. Prognostic significance of germlineBRCA2mutations in hereditary breast cancer patients[J]. J Clin Oncol, 2000, 18(21 Suppl): 119S-124S.

    [48] [48] ZHONG Q, PENG H L, ZHAO X, et al. Effects ofBRCA1-andBRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis[J]. Clin Cancer Res, 2015, 21(1): 211-220.

    [49] [49] BARETTA Z, MOCELLIN S, GOLDIN E, et al. Effect ofBRCAgermline mutations on breast cancer prognosis: a systematic review and meta-analysis[J]. Medicine (Baltimore), 2016, 95(40): e4975.

    [50] [50] COPSON E R, MAISHMAN T C, TAPPER W J, et al. GermlineBRCAmutation and outcome in young-onset breast cancer (POSH): a prospective cohort study[J]. Lancet Oncol, 2018, 19(2): 169-180.

    [51] [51] NILSSON M P, HARTMAN L, IDVALL I, et al. Long-term prognosis of early-onset breast cancer in a population-based cohort with a knownBRCA1/2mutation status[J]. Breast Cancer Res Treat, 2014, 144(1): 133-142.

    [52] [52] MILLER R S, MOKIOU S, TAYLOR A, et al. Real-world clinical outcomes of patients withBRCA-mutated, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer: a CancerLinQ® study[J]. Breast Cancer Res Treat, 2022, 193(1): 83-94.

    [53] [53] LIU M, XIE F, LIU M Y, et al. Association betweenBRCAmutational status and survival in patients with breast cancer: a systematic review and meta-analysis[J]. Breast Cancer Res Treat, 2021, 186(3): 591-605.

    [54] [54] COLLINS J M, NORDSTROM B L, MCLAURIN K K, et al. A real-world evidence study of CDK4/6 inhibitor treatment patterns and outcomes in metastatic breast cancer by germlineBRCAmutation status[J]. Oncol Ther, 2021, 9(2): 575-589.

    [55] [55] WANG Y A, JIAN J W, HUNG C F, et al. Germline breast cancer susceptibility gene mutations and breast cancer outcomes[J]. BMC Cancer, 2018, 18(1): 315.

    [56] [56] TINTERRI C, DI MARIA GRIMALDI S, SAGONA A, et al. Comparison of long-term oncological results in young women with breast cancer betweenBRCA-mutation carriers versus non-carriers: how tumor and genetic risk factors influence the clinical prognosis[J]. Cancers (Basel), 2023, 15(16): 4177.

    [57] [57] National Comprehensive Cancer Network. NCCN guidelines: genetic/familial high-risk assessment: breast, ovarian, and pancreatic[EB/OL]. [2025-07-14]. https://www.nccn.org/guidelines/guidelines-detail?category2&id=1503.

    [58] [58] SESSA C, BALMAA J, BOBER S L, et al. Risk reduction and screening of cancer in hereditary breast-ovarian cancer syndromes: ESMO clinical practice guideline[J]. Ann Oncol, 2023, 34(1): 33-47.

    [59] [59] LOIBL S, ANDR F, BACHELOT T, et al. Early breast cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2024, 35(2): 159-182.

    [60] [60] BALMAA J, DEZ O, RUBIO I T, et al.BRCAin breast cancer: ESMO clinical practice guidelines[J]. Ann Oncol, 2011, 22(Suppl 6): vi31-vi34.

    [61] [61] MANAHAN E R, KUERER H M, SEBASTIAN M, et al. Consensus guidelines on genetic testing for hereditary breast cancer from the American society of breast surgeons[J]. Ann Surg Oncol, 2019, 26(10): 3025-3031.

    [62] [62] CAO W, XIE Y T, HE Y J, et al. Risk of ipsilateral breast tumor recurrence in primary invasive breast cancer following breast-conserving surgery withBRCA1andBRCA2mutation in China[J]. Breast Cancer Res Treat, 2019, 175(3): 749-754.

    [63] [63] WAN Q T, SU L M, OUYANG T, et al. Comparison of survival after breast-conserving therapyvsmastectomy among patients with or without theBRCA1/2variant in a large series of unselected Chinese patients with breast cancer[J]. JAMA Netw Open, 2021, 4(4): e216259.

    [64] [64] VAN DEN BROEK A J, SCHMIDT M K, VAN'T VEER L J, et al. Prognostic impact of breast-conserving therapy versus mastectomy ofBRCA1/2mutation carriers compared with noncarriers in a consecutive series of young breast cancer patients[J]. Ann Surg, 2019, 270(2): 364-372.

    [65] [65] TUNG N M, BOUGHEY J C, PIERCE L J, et al. Management of hereditary breast cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology guideline[J]. J Clin Oncol, 2020, 38(18): 2080-2106.

    [66] [66] VAN BARELE M, AKDENIZ D, HEEMSKERK-GERRITSEN B A M, et al. Contralateral breast cancer risk in patients with breast cancer and a germline-BRCA1/2pathogenic variant undergoing radiation[J]. J Natl Cancer Inst, 2023, 115(11): 1318-1328.

    [67] [67] PARK S, CHOI C, KIM H, et al. Olaparib enhances sensitization ofBRCA-proficient breast cancer cells to x-rays and protons[J]. Breast Cancer Res Treat, 2024, 203(3): 449-461.

    [68] [68] LOAP P, LOIRAT D, BERGER F, et al. Concurrent olaparib and radiotherapy in patients with triple-negative breast cancer: the phase 1 olaparib and radiation therapy for triple-negative breast cancer trial[J]. JAMA Oncol, 2022, 8(12): 1802-1808.

    [69] [69] VON MINCKWITZ G, SCHNEEWEISS A, LOIBL S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial[J]. Lancet Oncol, 2014, 15(7): 747-756.

    [70] [70] FOULKES W D.BRCA1andBRCA2: Chemosensitivity, treatment outcomes and prognosis[J]. Fam Cancer, 2006, 5(2): 135-142.

    [71] [71] DI LEO A, CLAUDINO W M, PESTRIN M, et al. Using specific cytotoxics with a targeted mind[J]. Breast, 2007, 16(Suppl 2): S120-S126.

    [72] [72] KELLAND L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7(8): 573-584.

    [73] [73] BORST P, ROTTENBERG S, JONKERS J. How do real tumors become resistant to cisplatin?[J]. Cell Cycle, 2008, 7(10): 1353-1359.

    [74] [74] HELLEDAY T, PETERMANN E, LUNDIN C, et al. DNA repair pathways as targets for cancer therapy[J]. Nat Rev Cancer, 2008, 8(3): 193-204.

    [75] [75] MARTIN S A, LORD C J, ASHWORTH A. DNA repair deficiency as a therapeutic target in cancer[J]. Curr Opin Genet Dev, 2008, 18(1): 80-86.

    [76] [76] GROELLY F J, FAWKES M, DAGG R A, et al. Targeting DNA damage response pathways in cancer[J]. Nat Rev Cancer, 2023, 23: 78-94.

    [77] [77] O'CONNOR M J. Targeting the DNA damage response in cancer[J]. Mol Cell, 2015, 60(4): 547-560.

    [78] [78] POLYAK K, GARBER J. Targeting the missing links for cancer therapy[J]. Nat Med, 2011, 17(3): 283-284.

    [79] [79] TUTT A N J, GARBER J E, KAUFMAN B, et al. Adjuvant olaparib for patients withBRCA1- orBRCA2-mutated breast cancer[J]. N Engl J Med, 2021, 384(25): 2394-2405.

    [80] [80] GEYER C E JR, GARBER J E, GELBER R D, et al. Overall survival in the OlympiA phase Ⅲ trial of adjuvant olaparib in patients with germline pathogenic variants inBRCA1/2and high-risk, early breast cancer[J]. Anna Oncol, 2022, 33(12): 1250-1268.

    [81] [81] JUDY E, GARBER E A. Pre-specified analyses of IDFS, DDFS and OS 10 years from First Patient In (FPI) in the OlympiA trial of adjuvant olaparib in germlineBRCA1/2mutation-associated breast cancer[C]. SABCS: San Antonio, 2024: GS1-09.

    [82] [82] STONE N J. RACING to judgement: weighing the value of pre-specified subgroup analyses[J]. Eur Heart J, 2023, 44(11): 984-985.

    [83] [83] SCHMID P, CORTES J, DENT R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer[J]. N Engl J Med, 2022, 386(6): 556-567.

    [84] [84] O'SHAUGHNESSY J, CORTES J, DENT R, et al. Exploratory biomarker analysis of the phase 3 KEYNOTE-522 study of neoadjuvant pembrolizumab or placebo plus chemotherapy followed by adjuvant pembrolizumab or placebo for early-stage TNBC[J]. Clin Cancer Res, 2025, 31(12_suppl): LB1-07.

    [85] [85] PUSZTAI L, YAU C, WOLF D M, et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage Ⅱ/Ⅲ breast cancer: results from the adaptively randomized I-SPY2 trial[J]. Cancer Cell, 2021, 39(7): 989-998. e5.

    [86] [86] MASUDA N, LEE S J, OHTANI S, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy[J]. N Engl J Med, 2017, 376(22): 2147-2159.

    [87] [87] LLUCH A, BARRIOS C H, TORRECILLAS L, et al. Phase Ⅲ trial of adjuvant capecitabine after standard neo-/adjuvant chemotherapy in patients with early triple-negative breast cancer (GEICAM/2003-11_CIBOMA/2004-01)[J]. J Clin Oncol, 2020, 38(3): 203-213.

    [88] [88] NETWORK C G A. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70.

    [89] [89] YU K D, YE F G, HE M, et al. Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: a phase 3 randomized clinical trial[J]. JAMA Oncol, 2020, 6(9): 1390-1396.

    [90] [90] HAHNEN E, LEDERER B, HAUKE J, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto randomized clinical trial[J]. JAMA Oncol, 2017, 3(10): 1378-1385.

    [91] [91] ABRAHAM J E, PINILLA K, DAYIMU A, et al. The PARTNER trial of neoadjuvant olaparib with chemotherapy in triplenegative breast cancer[J]. Nature, 2024, 629(8014): 1142-1148.

    [92] [92] ROBSON M, IM S A, SENKUS E, et al. Olaparib for metastatic breast cancer in patients with a germlineBRCAmutation[J]. N Engl J Med, 2017, 377(6): 523-533.

    [93] [93] LITTON J K, RUGO H S, ETTL J, et al. Talazoparib in patients with advanced breast cancer and a germlineBRCAmutation[J]. N Engl J Med, 2018, 379(8): 753-763.

    [94] [94] DIRAS V, HAN H S, KAUFMAN B, et al. Veliparib with carboplatin and paclitaxel inBRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(10): 1269-1282.

    [95] [95] ROBSON M E, TUNG N, CONTE P, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician's choice in patients with a germlineBRCAmutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4): 558-566.

    [96] [96] IMYANITOV E N. Breast cancer therapy forBRCA1carriers: moving towards platinum standard?[J]. Hered Cancer Clin Pract, 2009, 7(1): 8.

    [97] [97] TUTT A, TOVEY H, CHEANG M C U, et al. Carboplatin inBRCA1/2-mutated and triple-negative breast cancerBRCAness subgroups: the TNT Trial[J]. Nat Med, 2018, 24(5): 628-637.

    [98] [98] ISAKOFF S J, MAYER E L, HE L, et al. TBCRC009: a multicenter phase Ⅱ clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer[J]. J Clin Oncol, 2015, 33(17): 1902-1909.

    [99] [99] CHEN Y M, WANG X, DU F, et al. Association between homologous recombination deficiency and outcomes with platinum and platinum-free chemotherapy in patients with triple-negative breast cancer[J]. Cancer Biol Med, 2023, 20(2): 155-168.

    [100] [100] DESMEDT C, TURNER N, ARTEAGA C, et al. Analysis of germlineBRCA1/2mutations and uncommon somatic alterations from patients with HR+, HER2-, node-positive, high-risk early breast cancer enrolled in monarchE[J]. ESMO Open, 2024, 9: 103013.

    [101] [101] LI Q, CAI Y, LI J. Ribociclib plus endocrine therapy in early breast cancer[J]. N Engl J Med, 2024, 390(23): 2220.

    [102] [102] LOI S, CURIGLIANO G, SALGADO R F, et al. A randomized, double-blind trial of nivolumab (NIVO)vsplacebo (PBO) with neoadjuvant chemotherapy (NACT) followed by adjuvant endocrine therapy (ET)±NIVO in patients (pts) with high-risk, ER+ HER2– primary breast cancer (BC)[J]. Ann Oncol, 2023, 34: S1259-S1260.

    [103] [103] CARDOSO F, MCARTHUR H L, SCHMID P, et al. Phase Ⅲ study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo+endocrine therapy (ET) for early-stage high-risk ER+/HER2– breast cancer[J]. Ann Oncol, 2023, 34: S1260-S1261.

    [104] [104] GELMON K A, FASCHING P A, COUCH F J, et al. Clinical effectiveness of olaparib monotherapy in germlineBRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: phase Ⅲ b LUCY interim analysis[J]. Eur J Cancer, 2021, 152: 68-77.

    [105] [105] FRENEL J S, DALENC F, PISTILLI B, et al. 304P ESR1 mutations and outcomes inBRCA1/2or PALB2 germline mutation carriers receiving first line aromatase inhibitor+palbociclib (AI+P) for metastatic breast cancer (MBC) in the PADA-1 trial[J]. Ann Oncol, 2020, 31: S364.

    [106] [106] YAN S C, IMAM M. Progress and prospects in research and clinical practice of hormone receptor-positive, HER-2-negative breast cancer withBRCA1/2mutations[J]. Discov Oncol, 2023, 14(1): 110.

    [107] [107] TORRES A, KOKKONEN C, OLADEJI M, et al. Harnessing olaparib, palbociclib, and endocrine therapy (HOPE): phase Ⅰ/Ⅱ trial of olaparib, palbociclib and fulvestrant in patients withBRCA1/2-associated, hormone receptor-positive, HER2-negative metastatic breast cancer[J]. Cancer Res, 2022, 82(4_suppl): OT2-18-01.

    [108] [108] GOLDLUST I S, GUIDICE E, LEE J M. PARP inhibitors in ovarian cancer[J]. Semin Oncol, 2024, 51(1/2): 45-57.

    [109] [109] ANTOLIN A A, AMERATUNGA M, BANERJI U, et al. The kinase polypharmacology landscape of clinical PARP inhibitors[J]. Sci Rep, 2020, 10(1): 2585.

    [110] [110] SANDHU D, ANTOLIN A A, COX A R, et al. Identification of different side effects between PARP inhibitors and their polypharmacological multi-target rationale[J]. Br J Clin Pharmacol, 2022, 88(2): 742-752.

    [113] [113] KUHL C K, SCHRADING S, LEUTNER C C, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer[J]. J Clin Oncol, 2005, 23(33): 8469-8476.

    [114] [114] RIEDL C C, PONHOLD L, FLRY D, et al. Magnetic resonance imaging of the breast improves detection of invasive cancer, preinvasive cancer, and premalignant lesions during surveillance of women at high risk for breast cancer[J]. Clin Cancer Res, 2007, 13(20): 6144-6152.

    [115] [115] SARDANELLI F, PODO F, D'AGNOLO G, et al. Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results[J]. Radiology, 2007, 242(3): 698-715.

    [116] [116] PASSAPERUMA K, WARNER E, CAUSER P A, et al. Longterm results of screening with magnetic resonance imaging in women withBRCAmutations[J]. Br J Cancer, 2012, 107(1): 24-30.

    [117] [117] WARNER E, PLEWES D B, HILL K A, et al. Surveillance ofBRCA1andBRCA2mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination[J]. JAMA, 2004, 292(11): 1317-1325.

    [118] [118] WARNER E, HILL K, CAUSER P, et al. Prospective study of breast cancer incidence in women with aBRCA1orBRCA2mutation under surveillance with and without magnetic resonance imaging[J]. J Clin Oncol, 2011, 29(13): 1664-1669.

    [119] [119] PLEVRITIS S K, KURIAN A W, SIGAL B M, et al. Cost-effectiveness of screeningBRCA1/2mutation carriers with breast magnetic resonance imaging[J]. JAMA, 2006, 295(20): 2374-2384.

    [120] [120] SARDANELLI F, PODO F, SANTORO F, et al. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk Italian 1 study): final results[J]. Invest Radiol, 2011, 46(2): 94-105.

    [121] [121] CARBINE N E, LOSTUMBO L, WALLACE J, et al. Riskreducing mastectomy for the prevention of primary breast cancer[J]. Cochrane Database Syst Rev, 2018, 4(4): CD002748.

    [122] [122] BLONDEAUX E, SONNENBLICK A, AGOSTINETTO E, et al. Association between risk-reducing surgeries and survival in youngBRCAcarriers with breast cancer: an international cohort study[J]. Lancet Oncol, 2025, 26(6): 759-770.

    [123] [123] ROSENTHAL A N, FRASER L S M, PHILPOTT S, et al. Evidence of stage shift in women diagnosed with ovarian cancer during phase Ⅱ of the United Kingdom familial ovarian cancer screening study[J]. J Clin Oncol, 2017, 35(13): 1411-1420.

    [124] [124] SKATES S J, GREENE M H, BUYS S S, et al. Early detection of ovarian cancer using the risk of ovarian cancer algorithm with frequent CA125 testing in women at increased familial risk-combined results from two screening trials[J]. Clin Cancer Res, 2017, 23(14): 3628-3637.

    [125] [125] FRIEBEL T M, DOMCHEK S M, REBBECK T R. Modifiers of cancer risk inBRCA1andBRCA2mutation carriers: systematic review and meta-analysis[J]. J Natl Cancer Inst, 2014, 106(6): dju091.

    [126] [126] FINCH A P M, LUBINSKI J, MLLER P, et al. Impact of oophorectomy on cancer incidence and mortality in women with aBRCA1orBRCA2mutation[J]. J Clin Oncol, 2014, 32(15): 1547-1553.

    [127] [127] MORAN A, O'HARA C, KHAN S, et al. Risk of cancer other than breast or ovarian in individuals withBRCA1andBRCA2mutations[J]. Fam Cancer, 2012, 11(2): 235-242.

    [128] [128] LI S, SILVESTRI V, LESLIE G, et al. Cancer risks associated withBRCA1andBRCA2pathogenic variants[J]. J Clin Oncol, 2022, 40(14): 1529-1541.

    [129] [129] DBOUK M, KATONA B W, BRAND R E, et al. The multicenter cancer of pancreas screening study: impact on stage and survival[J]. J Clin Oncol, 2022, 40(28): 3257-3266.

    [130] [130] BUONOMO B, MASSAROTTI C, DELLINO M, et al. Reproductive issues in carriers of germline pathogenic variants in theBRCA1/2genes: an expert meeting[J]. BMC Med, 2021, 19(1): 205.

    [131] [131] LAMBERTINI M, PECCATORI F A, DEMEESTERE I, et al. Fertility preservation and post-treatment pregnancies in postpubertal cancer patients: ESMO clinical practice guidelines[J]. Ann Oncol, 2020, 31(12): 1664-1678.

    [132] [132] VUKOVI P, PECCATORI F A, MASSAROTTI C, et al. Preimplantation genetic testing for carriers ofBRCA1/2pathogenic variants[J]. Crit Rev Oncol Hematol, 2021, 157: 103201.

    [133] [133] KING M C, WIEAND S, HALE K, et al. Tamoxifen and breast cancer incidence among women with inherited mutations inBRCA1andBRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) breast cancer prevention trial[J]. JAMA, 2001, 286(18): 2251-2256.

    [134] [134] CUZICK J, FORBES J, EDWARDS R, et al. First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial[J]. Lancet, 200, 360(9336): 817-24.

    [135] [135] VOGEL V G. The NSABP Study of Tamoxifen and Raloxifene (STAR) trial[J]. Expert Rev Anticancer Ther, 2009, 9(1): 51-60.

    [136] [136] INGLE J N, LIU M H, LAWRENCE WICKERHAM D, et al. Selective estrogen receptor modulators and pharmacogenomic variation in ZNF423 regulation ofBRCA1expression: individualized breast cancer prevention[J]. Cancer Discov, 2013, 3(7): 812-825.

    [137] [137] CUZICK J, SESTAK I, FORBES J F, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-Ⅱ): an international, double-blind, randomised placebo-controlled trial[J]. Lancet, 2014, 383(9922): 1041-1048.

    [138] [138] GOSS P E, INGLE J N, ALS-MARTNEZ J E, et al. Exemestane for breast-cancer prevention in postmenopausal women[J]. N Engl J Med, 2011, 364(25): 2381-2391.

    [139] [139] NEMATI SHAFAEE M, GOUTSOULIAK K, LIN H, et al. Aromatase inhibitors and contralateral breast cancer inBRCAmutation carriers[J]. Breast Cancer Res Treat, 2022, 196(1): 143-152.

    [140] [140] BARASKA A, KANADYS W. Oral contraceptive use and breast cancer risk forBRCA1andBRCA2mutation carriers: systematic review and meta-analysis of case-control studies[J]. Cancers (Basel), 2022, 14(19): 4774.

    [141] [141] HARTMANN L C, SCHAID D J, WOODS J E, et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer[J]. N Engl J Med, 1999, 340(2): 77-84.

    [142] [142] HARTMANN L C, SELLERS T A, SCHAID D J, et al. Efficacy of bilateral prophylactic mastectomy inBRCA1andBRCA2gene mutation carriers[J]. J Natl Cancer Inst, 2001, 93(21): 1633-1637.

    [143] [143] MEIJERS-HEIJBOER H, VAN GEEL B, VAN PUTTEN W L, et al. Breast cancer after prophylactic bilateral mastectomy in women with aBRCA1orBRCA2mutation[J]. N Engl J Med, 2001, 345(3): 159-164.

    [144] [144] REBBECK T R, FRIEBEL T, LYNCH H T, et al. Bilateral prophylactic mastectomy reduces breast cancer risk inBRCA1andBRCA2mutation carriers: the PROSE Study Group[J]. J Clin Oncol, 2004, 22(6): 1055-1062.

    [145] [145] TEOH V, TASOULIS M K, GUI G. Contralateral prophylactic mastectomy in women with unilateral breast cancer who are genetic carriers, have a strong family history or are just young at presentation[J]. Cancers (Basel), 2020, 12(1): 140.

    [146] [146] METCALFE K, LUBINSKI J, SOUKUPOV J, et al. Abstract GS02-04: Surgical treatment of women with breast cancer and aBRCA1mutation: an international analysis of the impact of bilateral mastectomy on survival[J]. Cancer Res, 2024, 84(9_Supplement): GS02-4-GS02-04.

    [147] [147] SUN J, CHU F T, PAN J N, et al.BRCA-CRisk: a contralateral breast cancer risk prediction model forBRCAcarriers[J]. J Clin Oncol, 2023, 41(5): 991-999.

    [148] [148] SANTOSA K B, OLIVER J D, MOMOH A O. Contralateral prophylactic mastectomy and implications for breast reconstruction[J]. Gland Surg, 2021, 10(1): 498-506.

    [149] [149] CONTANT C M E, MENKE-PLUIJMERS M B E, SEYNAEVE C, et al. Clinical experience of prophylactic mastectomy followed by immediate breast reconstruction in women at hereditary risk of breast cancer (HB(O)C) or a provenBRCA1andBRCA2germ-line mutation[J]. Eur J Surg Oncol EJSO, 2002, 28(6): 627-632.

    [150] [150] KOTSOPOULOS J, GRONWALD J, HUZARSKI T, et al. Bilateral oophorectomy and all-cause mortality in women withBRCA1andBRCA2sequence variations[J]. JAMA Oncol, 2024, 10(4): 484-492.

    [151] [151] CONDUIT C, MILNE R L, FRIEDLANDER M L, et al. Bilateral salpingo-oophorectomy and breast cancer risk forBRCA1andBRCA2mutation carriers: assessing the evidence[J]. Cancer Prev Res (Phila), 2021, 14(11): 983-994.

    [152] [152] CHOI Y H, TERRY M B, DALY M B, et al. Association of risk-reducing salpingo-oophorectomy with breast cancer risk in women withBRCA1andBRCA2pathogenic variants[J]. JAMA Oncol, 2021, 7(4): 585-592.

    [153] [153] AZIZ N, ZHAO Q, BRY L, et al. College of American Pathologists' laboratory standards for next-generation sequencing clinical tests[J]. Arch Pathol Lab Med, 2015, 139(4): 481-493.

    [158] [158] REHDER C, BEAN L J H, BICK D, et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2021, 23(8): 1399-1415.

    [161] [161] RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424.

    [162] [162] SPURDLE A B, HEALEY S, DEVEREAU A, et al. ENIGMA evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation inBRCA1andBRCA2genes[J]. Hum Mutat, 2012, 33(1): 2-7.

    Tools

    Get Citation

    Copy Citation Text

    WANG Hongxia, YIN Yongmei, HU Xichun. Expert consensus on BRCA1/2 gene testing and clinical application in Chinese breast cancer patients (2025 edition)[J]. China Oncology, 2025, 35(7): 710

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 16, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email: WANG Hongxia (whx365@126.com)

    DOI:10.19401/j.cnki.1007-3639.2025.07.010

    Topics