Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 565(2025)

Frequency calibration method of saturated absorption spectrum for Rydberg atom electric field measurement

DING Chao1, XIAO Dongping2, SONG Hongtian3,4、*, TAN Zhukui1, HU Shanshan3,4, ZHANG Ying1, and CHEN Ling2
Author Affiliations
  • 1Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550001, China
  • 2School of Electrical Engineering, Chongqing University, Chongqing 400044, China
  • 3CSG Electric Power Research Institute, Guangzhou 510700, China
  • 4Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou 510700, China
  • show less
    References(26)

    [1] Simons M T, Artusio-Glimpse A B, Robinson A K et al. Rydberg atom-based sensors for radio-frequency electric field metrology, sensing, and communications[J]. Measurement: Sensors, 18, 100273(2021).

    [2] Du Y J, Lyu Z Y, Hu W D et al. Atomic-antenna-based quantum precision measurement of low-frequency electric fields and applications[J]. Chinese Journal of Quantum Electronics, 41, 701-712(2024).

    [3] Facon A, Dietsche E K, Grosso D et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state[J]. Nature, 535, 262-265(2016).

    [4] Wu J Y, Yang J, Gao W C et al. Rydberg atomic radio-optical measurement and spectrum processing techniques[J]. Infrared and Laser Engineering, 52, 187-211(2023).

    [5] Zhang L J, Jing M Y, Zhang H. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Journal of Shanxi University (Natural Science Edition), 45, 712-722(2022).

    [6] Li X K, Jia F D, Yu F C et al. The study on high n Rydberg state of La Ⅱ[J]. Acta Physica Sinica, 68, 223-231(2019).

    [7] Huang W, Liang Z T, Du Y X et al. Rydberg-atom-based electrometry[J]. Acta Physica Sinica, 64, 69-76(2015).

    [8] Pei D L. The Measurement of the Fine Structure of Cesium Atom Rydberg States[D](2018).

    [9] Lu Q, Shi L, Mao Q H. Research advances in dual-comb spectroscopy[J]. Chinese Journal of Lasers, 45, 400001(2018).

    [10] Liu B, Zhang L H, Wang Q F et al. Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms[J]. Nature Communications, 15, 9730(2024).

    [11] Bohaichuk S M, Booth D, Nickerson K et al. Origins of Rydberg-atom electrometer transient response and its impact on radio-frequency pulse sensing[J]. Physical Review Applied, 18, 034030(2022).

    [12] Anand S, Bradley C E, White R et al. A dual-species Rydberg array[J]. Nature Physics, 20, 1744-1750(2024).

    [13] Chen X H, Shi X R, Jia Y et al. Laser frequency locking based on EIT spectra of Rydberg atom[J]. Journal of Quantum Optics, 24, 430-435(2018).

    [14] Zhu X Y, Jin Z, Liang E et al. Preparation of steady 3D dark state entanglement in dissipative Rydberg atoms via electromagnetic induced transparency[J]. Annalen der Physik, 532, 2000059(2020).

    [15] Ma X, Zhao W G, Kang W C et al. Spatial application and research progress of optical frequency combs[J]. Space Electronic Technology, 20, 87-98(2023).

    [16] Sun Q, Liu H B, Zhang Y H et al. Phase jitter suppression by femtosecond squeezed light[J]. Chinese Journal of Lasers, 51, 2212001(2024).

    [17] Moille G, Stone J, Chojnacky M et al. Kerr-induced synchronization of a cavity soliton to an optical reference[J]. Nature, 624, 267-274(2023).

    [18] Guo J, McLemore C A, Xiang C et al. Chip-based laser with 1-hertz integrated linewidth[J]. Science Advances, 8, eabp9006(2022).

    [19] Kobtsev S, Kandrushin S, Potekhin A. Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelengthmeter[J]. Applied Optics, 46, 5840-5843(2007).

    [20] Lipka M, Parniak M, Wasilewski W. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference[J]. Applied Physics B, 123, 238(2017).

    [21] Diorico F, Zhutov A, Hosten O. Laser-cavity locking utilizing beam ellipticity: Accessing the 10-7 instability scale relative to cavity linewidth[J]. Optica, 11, 26-31(2024).

    [22] Chen Q Q. Single Frequency Microwave Electric Field Measurement Based on Rydberg Atoms[D](2021).

    [23] Song Z Y, Liang L Z, Liu S H et al. Design and research of Cs atomic concentration detection system based on laser absorption spectroscopy[J]. Chinese Journal of Quantum Electronics, 41, 852-860(2024).

    [24] Niu Q Q, Su N, Liu Y et al. Rydberg atomic two-color polarization spectroscopy laser frequency stabilization[J]. Journal of Quantum Optics, 29, 88-94(2023).

    [25] Cui S W, Peng W X, Li S N et al. Power frequency electric field measurement based on Rydberg atoms[J]. High Voltage Engineering, 49, 644-650(2023).

    [26] Kastberg A[M]. The Stark Effect(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chao DING, Dongping XIAO, Hongtian SONG, Zhukui TAN, Shanshan HU, Ying ZHANG, Ling CHEN. Frequency calibration method of saturated absorption spectrum for Rydberg atom electric field measurement[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 565

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on...

    Received: Jan. 15, 2025

    Accepted: --

    Published Online: Jul. 31, 2025

    The Author Email: Hongtian SONG (songht@csg.cn)

    DOI:10.3969/j.issn.1007-5461.2025.04.012

    Topics