Opto-Electronic Advances, Volume. 8, Issue 3, 240257-1(2025)
Soliton microcombs in optical microresonators with perfect spectral envelopes
[1] Y Sun, JY Wu, MX Tan et al. Applications of optical microcombs. Adv Opt Photonics, 15, 86-175(2023).
[2] SA Diddams, K Vahala, T Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).
[3] TE Drake, TC Briles, JR Stone et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys Rev X, 9, 031023(2019).
[4] Y Geng, H Zhou, XJ Han et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat Commun, 13, 1070(2022).
[5] L Stern, JR Stone, SB Kang et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci Adv, 6, eaax6230(2020).
[6] CY Bao, ZQ Yuan, L Wu et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat Commun, 12, 6573(2021).
[7] LY Dang, LG Huang, LL Shi et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron Adv, 6, 210149(2023).
[8] P Trocha, M Karpov, D Ganin et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).
[9] JD Wang, ZZ Lu, WQ Wang et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res, 8, 1964-1972(2020).
[10] SL Camenzind, JF Fricke, J Kellner et al. Dynamic and precise long-distance ranging using a free-running dual-comb laser. Opt Express, 30, 37245-37260(2022).
[11] MA Guidry, DM Lukin, KY Yang et al. Quantum optics of soliton microcombs. Nat Photonics, 16, 52-58(2022).
[12] LW Chen, Y Zhou, Y Li et al. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev, 6, 021304(2019).
[13] CY Bao, Y Xuan, DE Leaird et al. Spatial mode-interaction induced single soliton generation in microresonators. Optica, 4, 1011-1015(2017).
[14] YR Zhai, JC Liu, LH Jia et al. Dissipative Kerr soliton formation in dual-mode interaction Si3N4 microresonators. APL Photonics, 9, 101304(2024).
[15] KW Liu, SY Yao, CX Yang. Raman pure quartic solitons in Kerr microresonators. Opt Lett, 46, 993-996(2021).
[16] C Xiang, JQ Liu, J Guo et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).
[17] JY Ma, LF Xiao, JX Gu et al. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photonics Res, 7, 573-578(2019).
[18] FJ Shu, PJ Zhang, YJ Qian et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Sci China Phys Mech Astron, 63, 254211(2020).
[19] DY Chen, A Kovach, XQ Shen et al. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics, 4, 2376-2381(2017).
[20] MF Qu, CH Li, KQ Liu et al. Dynamic process of soliton generation in CaF2 crystalline whispering gallery mode resonators with negative TO effects. Opt Express, 32, 42846-42855(2024).
[21] H Wang, B Duan, K Wang et al. Direct tuning of soliton detuning in an ultrahigh-Q MgF2 crystalline resonator. Nanophotonics, 12, 3757-3765(2023).
[22] XW Liu, CZ Sun, B Xiong et al. Integrated high-Q crystalline ALN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics, 5, 1943-1950(2018).
[23] SY Yao, KW Liu, CX Yang. Pure quartic solitons in dispersion-engineered aluminum nitride micro-cavities. Opt Express, 29, 8312-8322(2021).
[24] L Chang, WQ Xie, HW Shu et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat Commun, 11, 1331(2020).
[25] O Melchert, S Kinnewig, F Dencker et al. Soliton compression and supercontinuum spectra in nonlinear diamond photonics. Diam Relat Mater, 136, 109939(2023).
[26] RL Miao, CX Zhang, X Zheng et al. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photonics Res, 10, 1859-1867(2022).
[27] HR Guo, M Karpov, E Lucas et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys, 13, 94-102(2017).
[28] V Brasch, M Geiselmann, MHP Pfeiffer et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt Express, 24, 29312-29320(2016).
[29] J Li, S Wan, JL Peng et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3N4 microresonator. Opt Express, 30, 13690-13698(2022).
[30] XR Ji, JQ Liu, JJ He et al. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun Phys, 5, 84(2022).
[31] H Zhou, Y Geng, WW Cui et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci Appl, 8, 50(2019).
[32] XY Wang, XK Qiu, ML Liu et al. Flat soliton microcomb source. Opto-Electron Sci, 2, 230024(2023).
[33] T Herr, V Brasch, JD Jost et al. Temporal solitons in optical microresonators. Nat Photonics, 8, 145-152(2014).
[34] SS Jiang, CL Guo, HY Fu et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system. Opt Express, 28, 38304-38316(2020).
[35] MJ Yu, Y Okawachi, R Cheng et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci Appl, 9, 9(2020).
[36] V Brasch, M Geiselmann, T Herr et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).
[37] Z Gong, XW Liu, YT Xu et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).
[38] CL Wang, J Li, AL Yi et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci Appl, 11, 341(2022).
[39] W Wu, QB Sun, Y Wang et al. Mid-infrared broadband optical frequency comb generated in MgF2 resonators. Photonics Res, 10, 1931-1936(2022).
[40] FX Wang, WQ Wang, R Niu et al. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon Rev, 14, 1900190(2020).
[41] J Riemensberger, A Lukashchuk, M Karpov et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).
[42] JR Stone, TC Briles, TE Drake et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys Rev Lett, 121, 063902(2018).
[43] HM Zheng, W Sun, XX Ding et al. Programmable access to microresonator solitons with modulational sideband heating. APL Photonics, 8, 126110(2023).
[44] G Moille, L Chang, WQ Xie et al. Dissipative Kerr solitons in a III-V microresonator. Laser Photon Rev, 14, 2000022(2020).
[45] BL Zhao, LR Wang, QB Sun et al. Repetition-rate multiplicable soliton microcomb generation and stabilization via phase-modulated pumping scheme. Appl Phys Express, 13, 032009(2020).
[46] WC Fan, ZZ Lu, W Li et al. Low-threshold 4/5 octave-spanning mid-infrared frequency comb in a LiNbO3 microresonator. IEEE Photonics J, 11, 6603407(2019).
[47] M Karpov, MHP Pfeiffer, HR Guo et al. Dynamics of soliton crystals in optical microresonators. Nat Phys, 15, 1071-1077(2019).
[48] Y He, JW Ling, MX Li et al. Perfect soliton crystals on demand. Laser Photon Rev, 14, 1900339(2020).
[49] MG Suh, X Yi, YH Lai et al. Searching for exoplanets using a microresonator astrocomb. Nat Photonics, 13, 25-30(2019).
[50] C Kim, CC Ye, Y Zheng et al. Design and fabrication of AlGaAs-on-insulator microring resonators for nonlinear photonics. IEEE J Sel Top Quantum Electron, 29, 5900214(2023).
[51] H Liu, WT Wang, JH Yang et al. Observation of deterministic double dissipative-Kerr-soliton generation with avoided mode crossing. Phys Rev Res, 5, 013172(2023).
[52] CY Bao, Y Xuan, JA Jaramillo-Villegas et al. Direct soliton generation in microresonators. Opt Lett, 42, 2519-2522(2017).
[53] ZZ Lu, WQ Wang, WF Zhang et al. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]. Opt Mater Express, 8, 2662-2669(2018).
[54] I Coddington, N Newbury, W Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).
[55] G Piccoli, M Sanna, M Borghi et al. Silicon oxynitride platform for linear and nonlinear photonics at NIR wavelengths. Opt Mater Express, 12, 3551-3562(2022).
[56] ZZ Lu, WQ Wang, WF Zhang et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv, 9, 025314(2019).
[57] WQ Wang, WF Zhang, ST Chu et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics, 4, 1677-1683(2017).
[58] LK Chen, YF Xiao. On-chip lithium niobate microresonators for photonics applications. Sci China Phys Mech Astron, 63, 224231(2020).
[59] M Zhang, B Buscaino, C Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).
[60] WQ Wang, ZZ Lu, WF Zhang et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett, 43, 2002-2005(2018).
[61] ZD Li, YQ Xu, S Shamailov et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat Photonics, 18, 46-53(2024).
Get Citation
Copy Citation Text
Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie. Soliton microcombs in optical microresonators with perfect spectral envelopes[J]. Opto-Electronic Advances, 2025, 8(3): 240257-1
Category: Research Articles
Received: Oct. 29, 2024
Accepted: Feb. 10, 2025
Published Online: May. 28, 2025
The Author Email: Wei Zhao (WZhao), Guangwei Hu (GWHu), Peng Xie (PXie)