Journal of Synthetic Crystals, Volume. 51, Issue 7, 1270(2022)
Simulation of GeSe Based Thin Film Solar Cells
[1] [1] LEE T D, EBONG A U. A review of thin film solar cell technologies and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297.
[2] [2] NREL. Best research-cell efficiency chart[DB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.
[3] [3] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 56)[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(7): 629-638.
[5] [5] CHEN C, TANG J. Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions[J]. ACS Energy Letters, 2020, 5(7): 2294-2304.
[6] [6] KONDROTAS R, CHEN C, TANG J. Sb2S3 solar cells[J]. Joule, 2018, 2(5): 857-878.
[7] [7] MOON D G, REHAN S, YEON D H, et al. A review on binary metal sulfide heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109963.
[8] [8] LIU S C, YANG Y, Li Z B, et al. GeSe thin-film solar cells[J]. Materials Chemistry Frontiers, 2020, 4:775-787.
[9] [9] LIU S C, LI Z B, WU J P, et al. Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction[J]. Science China Materials, 2021, 64(9): 2118-2126.
[10] [10] LIU S C, DAI C M, MIN Y M, et al. An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics[J]. Nature Communications, 2021, 12: 670.
[11] [11] CHIRIL A, BUECHELER S, PIANEZZI F, et al. Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films[J]. Nature Materials, 2011, 10(11): 857-861.
[12] [12] SHIN D, SAPAROV B, MITZI D B. Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials[J]. Advanced Energy Materials, 2017, 7(11): 1602366.
[13] [13] LIU Y M, SUN Y, ROCKETT A. A new simulation software of solar cells-wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128.
[14] [14] GHARIBSHAHIAN I, OROUJI A A, SHARBATI S. Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110581.
[15] [15] BASAK A, SINGH U P. Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111184.
[17] [17] LIU S C, MI Y, XUE D J, et al. Investigation of physical and electronic properties of GeSe for photovoltaic applications[J]. Advanced Electronic Materials, 2017, 3(11): 1700141.
[19] [19] CHEN B W, RUAN Y R, LI J M, et al. Highly oriented GeSe thin film: self-assembly growth via the sandwiching post-annealing treatment and its solar cell performance[J]. Nanoscale, 2019, 11(9): 3968-3978.
[20] [20] MOHAMMADI M H, FATHI D, ESKANDARI M. NiO@GeSe core-shell nano-rod array as a new hole transfer layer in perovskite solar cells: a numerical study[J]. Solar Energy, 2020, 204: 200-207.
Get Citation
Copy Citation Text
XIAO Youpeng. Simulation of GeSe Based Thin Film Solar Cells[J]. Journal of Synthetic Crystals, 2022, 51(7): 1270
Category:
Received: Mar. 30, 2022
Accepted: --
Published Online: Aug. 12, 2022
The Author Email: Youpeng XIAO (xiaoypnc@ecut.edu.cn)
CSTR:32186.14.