Chinese Optics Letters, Volume. 21, Issue 3, 031202(2023)
Enhanced Fano resonance for high-sensitivity sensing based on bound states in the continuum
[1] M. Nejat, N. Nozhat. THz fingerprints of cement-based materials. IEEE Sens. J., 19, 10490(2020).
[2] S. Ding, J. Y. Ou, L. H. Du, L. G. Zhu, S. A. Khan, H. Y. Chen, J. F. Zhu. Enhancing ultra-wideband THz fingerprint sensing of unpatterned 2D carbon-based nanomaterials. Carbon, 179, 666(2021).
[3] J. S. Dolado, G. Goracci, E. Duque, P. Martauz, Y. Zuo, G. Ye. THz fingerprints of cement-based materials. Materials, 13, 4194(2020).
[4] R. Yahiaoui, A. C. Strikwerda, P. U. Jepsen. Terahertz plasmonic structure with enhanced sensing capabilities. IEEE Sens. J., 16, 2484(2016).
[5] I. Al-Naib. Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron., 23, 4700405(2017).
[6] F. Zangeneh-Nejad, R. Safian. A graphene-based THz ring resonator for label-free sensing. IEEE Sens. J., 16, 4338(2016).
[7] Y. Huang, S. C. Zhong, Y. C. Shen, L. G. Yao, Y. J. Yu, D. X. Cui. Graphene/insulator stack based ultrasensitive terahertz sensor with surface plasmon resonance. IEEE Photonics J., 9, 5900911(2017).
[8] M. Biabanifard, S. Asgari, S. Biabanifard, M. S. Abrishamian. Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik, 182, 433(2019).
[9] G. Feng, Z. H. Chen, X. W. Wang, X. Liu, F. Sun, Y. B. Yang. Ultra-broadband terahertz absorber based on double truncated pyramid structure. Mater. Today Commun., 31, 103624(2022).
[10] X. Hu, G. Q. Xu, L. Wen, H. C. Wang, Y. C. Zhao, Y. X. Zhang, D. R. S. Cumming, Q. Chen. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev., 10, 962(2016).
[11] Z. H. Chen, Y. Wang, Y. B. Yang, N. Qiao, Y. C. Wang, Z. Y. Yu. Enhanced normal-direction excitation and emission of dual-emitting quantum dots on a cascaded photonic crystal surface. Nanoscale, 6, 14708(2014).
[12] Z. H. Chen, N. Qiao, Y. B. Yang, H. Ye, S. D. Liu, W. J. Wang, Y. C. Wang. Enhanced broadband electromagnetic absorption in silicon film with photonic crystal surface and random gold grooves reflector. Sci. Rep., 5, 12794(2015).
[13] Z. H. Chen, N. Qiao, Y. Wang, L. Liang, Y. B. Yang, H. Ye, S. D. Liu. Efficient broadband energy absorption based on inverted-pyramid photonic crystal surface and two-dimensional randomly patterned metallic reflector. Appl. Energy, 172, 59(2016).
[14] L. H. Du, J. Li, Q. Liu, J. H. Zhao, L. G. Zhu. High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application. Opt. Mater. Express, 7, 1335(2017).
[15] Y. B. Zhang, W. W. Liu, Z. C. Li, Z. Li, H. Cheng, S. Q. Chen, J. G. Tian. High-quality-factor multiple Fano resonances for refractive index sensing. Opt. Lett., 43, 1842(2018).
[16] L. Zhou, J. Zhou, W. Lai, X. D. Yang, J. Meng, L. B. Su, C. J. Gu, T. Jiang, E. Y. B. Pun, L. Y. Shao, L. Petti, X. W. Sun, Z. H. Jia, Q. X. Li, J. G. Han, P. Mormile. Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system. Nat. Commun., 11, 1785(2020).
[17] M. Karthikeyan, P. Jayabala, S. Ramachandran, S. S. Dhanabalan, T. Sivanesan, M. Ponnusamy. Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing. Nanomaterials, 12, 2693(2022).
[18] L. Liang, X. Hu, L. Wen, Y. H. Zhu, X. G. Yang, J. Zhou, Y. X. Zhang, I. E. Carranza, J. Grant, C. P. Jiang, R. S. Cumming, B. J. Li, Q. Chen. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser Photonics Rev., 12, 1800078(2018).
[19] K. L. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, C. Lee. Nanofluidic terahertz metasensor for sensing in aqueous environment. Appl. Phys. Lett., 113, 071105(2018).
[20] X. G. Zhao, C. X. Chen, K. Kaj, I. Hammock, Y. W. Huang, R. D. Averitt, X. Zhang. Terahertz investigation of bound states in the continuum of metallic metasurfaces. Optica, 7, 1548(2020).
[21] A. I. Ovcharenko, C. Blanchard, J. P. Hugonin, C. Sauvan. Bound states in the continuum in symmetric and asymmetric photonic crystal slabs. Phys. Rev. B, 101, 155303(2020).
[22] S. Han, L. Q. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. C. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, R. Singh. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).
[23] L. Q. Zhu, S. Yuan, C. Zeng, J. S. Xia. Manipulating photoluminescence of carbon G-center in silicon metasurface with optical bound states in the continuum. Adv. Opt. Mater., 8, 1901830(2020).
[24] Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, R. Singh. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett., 115, 151105(2019).
[25] T. C. Tan, Y. K. Srivastava, R. T. Ako, W. H. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, R. Singh. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv. Mater., 33, 2100836(2021).
[26] R. Wang, L. Xu, J. Y. Wang, L. Sun, Y. N. Jiao, Y. Meng, S. Chen, C. Chang, C. H. Fan. Electric Fano resonance-based terahertz metasensors. Nanoscale, 13, 18467(2021).
[27] S. Romano, G. Zito, S. Torino, G. Calafiore, E. Penzo, G. Coppola, S. Cabrini, I. Rendina, V. Mocella. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum. Photonics Res., 6, 726(2018).
[28] W. Y. Cen, T. T. Lang, J. F. Wang, M. Y. Xiao. High-Q Fano terahertz resonance based on bound states in the continuum in all-dielectric metasurface. Appl. Surf. Sci., 575, 151723(2021).
[29] J. W. Yoon, S. H. Song, R. Magnusson. Critical field enhancement of asymptotic optical bound states in the continuum. Sci. Rep., 5, 18301(2015).
[30] S. Zhang, G. C. Li, Y. Q. Chen, X. P. Zhu, S. D. Liu, D. Y. Lei, H. G. Duan. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano, 10, 11105(2016).
[31] S. Joseph, S. Sarkar, S. Khan, J. Joseph. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system. Adv. Opt. Mater., 9, 2001895(2021).
[32] Q. H. Wang, B. T. Gao, M. Raglione, H. X. Wang, B. J. Li, F. Toor, M. A. Arnold, H. T. Ding. Design, fabrication, and modulation of THz bandpass metamaterials. Laser Photonics Rev., 13, 1900071(2019).
[33] S. L. Li, Y. L. Wang, R. Z. Jiao, L. L. Wang, G. Y. Duan, L. Yu. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express, 25, 3525(2017).
[34] S. Y. Li, Y. Y. Zhang, X. K. Song, Y. L. Wang, L. Yu. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Opt. Express, 24, 15351(2016).
[35] L. Q. Cong, M. Manjappa, N. N. Xu, I. Al-Naib, W. L. Zhang, R. Singh. Fano resonances in terahertz metasurfaces: a figure of merit optimization. Adv. Opt. Mater., 3, 1537(2015).
[36] Z. Hu, L. J. Yuan, Y. Y. Lu. Resonant field enhancement near bound states in the continuum on periodic structures. Phys. Rev. A, 101, 043825(2020).
[37] X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. W. Zhang, T. Wang, L. H. Liu, J. H. Xie, J. Q. Yao. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485(2019).
[38] X. Chen, W. H. Fan, X. Q. Jiang, H. Yan. High-Q toroidal dipole metasurfaces driven by bound states in the continuum for ultrasensitive terahertz sensing. J. Light. Technol., 40, 2181(2022).
[39] S. I. Azzam, K. Chaudhuri, A. Lagutchev, Z. Jacob, Y. L. Kim, V. M. Shalaev, A. Boltasseva, A. V. Kidishev. Single and multi-mode directional lasing from arrays of dielectric nanoresonators. Laser Photonics Rev., 15, 2000411(2021).
Get Citation
Copy Citation Text
Guang Feng, Zhihui Chen, Yang Wang, Xin Liu, Yinshan Liu, Xiao Liu, Fei Sun, Yibiao Yang, Shuqi Chen, "Enhanced Fano resonance for high-sensitivity sensing based on bound states in the continuum," Chin. Opt. Lett. 21, 031202 (2023)
Category: Instrumentation, Measurement, and Optical Sensing
Received: Sep. 30, 2022
Accepted: Nov. 21, 2022
Published Online: Feb. 28, 2023
The Author Email: Zhihui Chen (huixu@126.com), Shuqi Chen (schen@nankai.edu.cn)