Chinese Journal of Quantum Electronics, Volume. 41, Issue 5, 701(2024)

Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications

DU Yijie1, LYU Ziyao1, HU Weidong2, HE Jun3, LIU Zhihui1, DONG Tao1、*, and JIN Shichao1
Author Affiliations
  • 1State Key Laboratory of Space-Ground Integrated Information Technology, Space Star Technology Co., Ltd.,Beijing 100095, China
  • 2School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,Shanxi University, Taiyuan 030006, China
  • show less
    References(43)

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).

    [3] Shen Q, Guan J Y, Ren J G et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 610, 661-666(2022).

    [4] Bothwell T, Kedar D, Oelker E et al. JILA SrI optical lattice clock with uncertainty of 2.0×10-18[J]. Metrologia, 56, 065004(2019).

    [5] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).

    [6] Lucivero V G, Lee W, Dural N et al. Femtotesla direct magnetic gradiometer using a single multipass cell[J]. Physical Review Applied, 15, 014004(2021).

    [7] Limes M E, Foley E L, Kornack T W et al. Portable magnetometry for detection of biomagnetism in ambient environments[J]. Physical Review Applied, 14, 011002(2020).

    [8] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).

    [9] Bevilacqua G, Biancalana V, Chessa P et al. Multichannel optical atomic magnetometer operating in unshielded environment[J]. Applied Physics B, 122, 103(2016).

    [10] Fancher C T, Scherer D R, St, John M C et al. Rydberg atom electric field sensors for communications and sensing[J]. IEEE Transactions on Quantum Engineering, 2, 3501313(2021).

    [11] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).

    [12] Liu B, Zhang L H, Liu Z K et al. Electric field measurement and application based on rydberg atoms[J]. Electromagnetic Science, 1, 0020151(2023).

    [13] Zhang H, Jiao Y C, Li W B et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 86, 106001(2023).

    [14] Huang W, Liang Z T, Du Y X et al. Rydberg-atom-based electrometry[J]. Acta Physica Sinica, 64, 160702(2015).

    [15] Liao K Y, Tu H T, Zhang X D et al. Rydberg atom based microwave sensing and communication[J]. Scientia Sinica-Physica, Mechanica & Astronomica, 51, 074202(2021).

    [16] Gallagher T F[M]. Rydberg Atoms(2005).

    [17] Holloway C L, Prajapati N, Sherman J A et al. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 4, 034401(2022).

    [18] Yao J W, An Q, Zhou Y L et al. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field[J]. Optics Letters, 47, 5256-5259(2022).

    [19] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593-2596(1991).

    [20] Hao Y M, Lin G W, Lin X M et al. Single-photon transistor based on cavity electromagnetically induced transparency with Rydberg atomic ensemble[J]. Scientific Reports, 9, 4723(2019).

    [21] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 77, 633-673(2005).

    [22] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [23] Osterwalder A, Merkt F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 82, 1831-1834(1999).

    [24] Grimmel J, Mack M, Karlewski F et al. Measurement and numerical calculation of rubidium Rydberg Stark spectra[J]. New Journal of Physics, 17, 053005(2015).

    [25] Ma L, Paradis E, Raithel G. DC electric fields in electrode-free glass vapor cell by photoillumination[J]. Optics Express, 28, 3676-3685(2020).

    [26] Li L, Jiao Y C, Hu J L et al. Super low-frequency electric field measurement based on Rydberg atoms[J]. Optics Express, 31, 29228-29234(2023).

    [27] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 13, 054034(2020).

    [28] Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 18, 053017(2016).

    [29] Jiao Y C, Han X X, Yang Z W et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 94, 023832(2016).

    [30] Jiao Y C, Hao L P, Han X X et al. Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states[J]. Physical Review Applied, 8, 014028(2017).

    [31] Liu B, Zhang L H, Liu Z K et al. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor[J]. Physical Review Applied, 18, 014045(2022).

    [32] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [33] Cai M H, Xu Z S, You S H et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250(2022).

    [35] Meyer D H, O'Brien C, Fahey D P et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 104, 043103(2021).

    [36] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [37] Yang W H, Shi S P, Wang Y J et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 42, 4553-4556(2017).

    [38] Knarr S H, Bucklew V G, Langston J et al. Spatiotemporal multiplexed Rydberg receiver[J]. IEEE Transactions on Quantum Engineering, 4, 3500108(2023).

    [39] Li H Q, Hu J L, Bai J X et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 30, 13522-13529(2022).

    [40] Liu Z K, Zhang L H, Liu B et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 13, 1997(2022).

    [41] Miller B N, Meyer D H, Virtanen T et al. RydIQule: A graph-based paradigm for modeling Rydberg and atomic sensors[J]. Computer Physics Communications, 294, 108952(2024).

    [42] Toney J E, Tarditi A G, Pontius P et al. Detection of energized structures with an electro-optic electric field sensor[J]. IEEE Sensors Journal, 14, 1364-1369(2014).

    [43] Ping J S, Wang M Y, Zhang M et al. Introduction of space exploration progress for planetary radio burst emission[J]. Journal of Deep Space Exploration, 8, 80-91(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yijie DU, Ziyao LYU, Weidong HU, Jun HE, Zhihui LIU, Tao DONG, Shichao JIN. Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications[J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 701

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 3, 2023

    Accepted: --

    Published Online: Jan. 8, 2025

    The Author Email: Tao DONG (dongtaoandy@163.com)

    DOI:10.3969/j.issn.1007-5461.2024.05.001

    Topics