Chinese Journal of Quantum Electronics, Volume. 41, Issue 5, 701(2024)
Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications
[1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).
[2] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).
[3] Shen Q, Guan J Y, Ren J G et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 610, 661-666(2022).
[4] Bothwell T, Kedar D, Oelker E et al. JILA SrI optical lattice clock with uncertainty of 2.0×10-18[J]. Metrologia, 56, 065004(2019).
[5] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).
[6] Lucivero V G, Lee W, Dural N et al. Femtotesla direct magnetic gradiometer using a single multipass cell[J]. Physical Review Applied, 15, 014004(2021).
[7] Limes M E, Foley E L, Kornack T W et al. Portable magnetometry for detection of biomagnetism in ambient environments[J]. Physical Review Applied, 14, 011002(2020).
[8] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).
[9] Bevilacqua G, Biancalana V, Chessa P et al. Multichannel optical atomic magnetometer operating in unshielded environment[J]. Applied Physics B, 122, 103(2016).
[10] Fancher C T, Scherer D R, St, John M C et al. Rydberg atom electric field sensors for communications and sensing[J]. IEEE Transactions on Quantum Engineering, 2, 3501313(2021).
[11] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).
[12] Liu B, Zhang L H, Liu Z K et al. Electric field measurement and application based on rydberg atoms[J]. Electromagnetic Science, 1, 0020151(2023).
[13] Zhang H, Jiao Y C, Li W B et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 86, 106001(2023).
[14] Huang W, Liang Z T, Du Y X et al. Rydberg-atom-based electrometry[J]. Acta Physica Sinica, 64, 160702(2015).
[15] Liao K Y, Tu H T, Zhang X D et al. Rydberg atom based microwave sensing and communication[J]. Scientia Sinica-Physica, Mechanica & Astronomica, 51, 074202(2021).
[16] Gallagher T F[M]. Rydberg Atoms(2005).
[17] Holloway C L, Prajapati N, Sherman J A et al. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 4, 034401(2022).
[18] Yao J W, An Q, Zhou Y L et al. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field[J]. Optics Letters, 47, 5256-5259(2022).
[19] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593-2596(1991).
[20] Hao Y M, Lin G W, Lin X M et al. Single-photon transistor based on cavity electromagnetically induced transparency with Rydberg atomic ensemble[J]. Scientific Reports, 9, 4723(2019).
[21] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 77, 633-673(2005).
[22] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[23] Osterwalder A, Merkt F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 82, 1831-1834(1999).
[24] Grimmel J, Mack M, Karlewski F et al. Measurement and numerical calculation of rubidium Rydberg Stark spectra[J]. New Journal of Physics, 17, 053005(2015).
[25] Ma L, Paradis E, Raithel G. DC electric fields in electrode-free glass vapor cell by photoillumination[J]. Optics Express, 28, 3676-3685(2020).
[26] Li L, Jiao Y C, Hu J L et al. Super low-frequency electric field measurement based on Rydberg atoms[J]. Optics Express, 31, 29228-29234(2023).
[27] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 13, 054034(2020).
[28] Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 18, 053017(2016).
[29] Jiao Y C, Han X X, Yang Z W et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 94, 023832(2016).
[30] Jiao Y C, Hao L P, Han X X et al. Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states[J]. Physical Review Applied, 8, 014028(2017).
[31] Liu B, Zhang L H, Liu Z K et al. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor[J]. Physical Review Applied, 18, 014045(2022).
[32] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[33] Cai M H, Xu Z S, You S H et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250(2022).
[35] Meyer D H, O'Brien C, Fahey D P et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 104, 043103(2021).
[36] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).
[37] Yang W H, Shi S P, Wang Y J et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 42, 4553-4556(2017).
[38] Knarr S H, Bucklew V G, Langston J et al. Spatiotemporal multiplexed Rydberg receiver[J]. IEEE Transactions on Quantum Engineering, 4, 3500108(2023).
[39] Li H Q, Hu J L, Bai J X et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 30, 13522-13529(2022).
[40] Liu Z K, Zhang L H, Liu B et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 13, 1997(2022).
[41] Miller B N, Meyer D H, Virtanen T et al. RydIQule: A graph-based paradigm for modeling Rydberg and atomic sensors[J]. Computer Physics Communications, 294, 108952(2024).
[42] Toney J E, Tarditi A G, Pontius P et al. Detection of energized structures with an electro-optic electric field sensor[J]. IEEE Sensors Journal, 14, 1364-1369(2014).
[43] Ping J S, Wang M Y, Zhang M et al. Introduction of space exploration progress for planetary radio burst emission[J]. Journal of Deep Space Exploration, 8, 80-91(2021).
Get Citation
Copy Citation Text
Yijie DU, Ziyao LYU, Weidong HU, Jun HE, Zhihui LIU, Tao DONG, Shichao JIN. Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications[J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 701
Category:
Received: Nov. 3, 2023
Accepted: --
Published Online: Jan. 8, 2025
The Author Email: Tao DONG (dongtaoandy@163.com)