Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450007(2024)
Characterization of cerebrovascular changes in Alzheimer’s disease mice by photoacoustic imaging
[1] G. Logroscino. Prevention of Alzheimer’s disease and dementia: The evidence is out there, but new high-quality studies and implementation are needed. J. Neurol. Neurosurg. Psychiatry, 91, 1140-1141(2020).
[2] C. Patterson. World Alzheimer Report 2018: The state of the art of dementia research: new frontiers. Alzheimer’s Dis. Int. (London, UK), 2, 14-20(2018).
[3] M. G. Ulep, S. K. Saraon, S. McLea. Alzheimer disease. J. Nurse Pract., 14, 129-135(2018).
[4] Y. Xu, J. Wang, H. Wang, Y. Wang, Z. Liu, J. Yu, Z. Zhou, D. Peng, B. Gu, K. Li, Q. Hou, X. Ma, X. Wang, Z. Wang, H. Wang, B. Tangm. 2023 data and strategies of prevention and control for Alzheimer’s disease in China. Chin. J. Alzheimer’s Dis. Relat. Disord., 6, 175-192+173(2023).
[5] M. Baumgart, H. M. Snyder, M. C. Carrillo, S. Fazio, H. Kim, H. Johns. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement., 11, 718-726(2015).
[6] M. Cortes-Canteli, C. Iadecola. Alzheimer’s disease and vascular aging: JACC focus seminar. J. Am. Coll. Cardiol., 75, 942-951(2020).
[7] X. Zhang, X. Yin, J. Zhang, A. Li, H. Gong, Q. Luo, H. Zhang, Z. Gao, H. Jiang. High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer’s disease mice. Natl. Sci. Rev., 6, 1223-1238(2019).
[8] A. Jullienne, J. I. Szu, R. Quan, M. V. Trinh, T. Norouzi, B. P. Noarbe, A. A. Bedwell, K. Eldridge, S. C. Persohn, P. R. Territo, A. Obenaus. Cortical cerebrovascular and metabolic perturbations in the 5×FAD mouse model of Alzheimer’s disease. Front. Aging Neurosci., 15, 1220036(2023).
[9] S. Na, J. J. Russin, L. Lin, X. Yuan, P. Hu, K. B. Jann, L. Yan, K. Maslov, J. Shi, D. J. Wang, C. Y. Liu, L. V. Wang. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng., 6, 584-592(2022).
[10] L. Lin, L. V. Wang. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol., 19, 365-384(2022).
[11] A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, M. Olivo. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics, 16, 100144(2019).
[12] H. Peng, Z. Cheng, L. Zeng, X. Ji. Photoacoustic microscopy based on transparent piezoelectric ultrasound transducers. J. Innov. Opt. Health Sci., 16, 2330001(2023).
[13] Z. Zhang, Y. Shi, S. Yang, D. Xing. Subdiffraction-limited second harmonic photoacoustic microscopy based on nonlinear thermal diffusion. Opt. Lett., 43, 2336-2339(2018).
[14] A. A. Oraevsky, S. L. Jacques, F. K. Tittel. Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl. Opt., 36, 402-415(1997).
[15] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 71, 016706(2005).
[16] Z. Qin, Y. Liu, J. Chi, Y. Ma, M. Sun. The sparse array elements selection in sparse imaging of circular-array photoacoustic tomography. J. Innov. Opt. Health Sci., 15, 2250030(2022).
[17] S. Huang, L. Nie. Recent progresses of photoacoustic imaging in biomedical application. J. Xiamen Univ. (Nat. Sci.), 58, 625-636(2019).
[18] Y. Li, Q. Zhang, H. Zhou, J. Li, X. Li, A. Li. Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer. J. Innov. Opt. Health Sci., 16, 2350009(2023).
[19] T. Guo, K. Xiong, B. Yuan, Z. Zhang, L. Wang, Y. Zhang, C. Liang, Z. Liu. Homogeneous-resolution photoacoustic microscopy for ultrawide field-of-view neurovascular imaging in Alzheimer’s disease. Photoacoustics, 31, 100516(2023).
[20] E. Zudaire, L. Gambardella, C. Kurcz, S. Vermeren. A computational tool for quantitative analysis of vascular networks. PLoS One, 6, e27385(2011).
[21] A. K. Kraeuter, P. C. Guest, Z. Sarnyai. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol. Biol., 1916, 99-103(2019).
[22] M. Leger, A. Quiedeville, V. Bouet, B. Haelewyn, M. Boulouard, P. Schumann-Bard, T. Freret. Object recognition test in mice. Nat. Protoc., 8, 2531-2537(2013).
[23] S. Palmqvist, M. Schöll, O. Strandberg, N. Mattsson, E. Stomrud, H. Zetterberg, K. Blennow, S. Landau, W. Jagust, O. Hansson. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun., 8, 1214(2017).
[24] R. L. Buckner, L. M. DiNicola. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci., 20, 5-3608(2019).
[25] B. Dubois, N. Villain, G. B. Frisoni, G. D. Rabinovici, M. Sabbagh, S. Cappa, A. Bejanin, S. Bombois, S. Epelbaum, M. Teichmann, M. O. Habert, A. Nordberg, K. Blennow, D. Galasko, Y. Stern, C. C. Rowe, S. Salloway, L. S. Schneider, J. L. Cummings, H. H. Feldman. Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group. Lancet Neurol., 20, 484-496(2021).
[26] F. Jessen, R. E. Amariglio, M. van Boxtel, M. Breteler, M. Ceccaldi, G. Chételat, B. Dubois, C. Dufouil, K. A. Ellis, W. M. van der Flier, L. Glodzik, A. C. van Harten, M. J. de Leon, P. McHugh, M. M. Mielke, J. L. Molinuevo, L. Mosconi, R. S. Osorio, A. Perrotin, R. C. Petersen, L. A. Rabin, L. Rami, B. Reisberg, D. M. Rentz, P. S. Sachdev, V. de la Sayette, A. J. Saykin, P. Scheltens, M. B. Shulman, M. J. Slavin, R. A. Sperling, R. Stewart, O. Uspenskaya, B. Vellas, P. J. Visser, M. Wagner. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement., 10, 844-852(2014).
[27] Y. Lin, P. Y. Shan, W. J. Jiang, C. Sheng, L. Ma. Subjective cognitive decline: preclinical manifestation of Alzheimer’s disease. Neurol. Sci., 40, 41-49(2019).
[28] A. Jullienne, M. V. Trinh, A. Obenaus. Neuroimaging of mouse models of Alzheimer’s disease. Biomedicines, 10, 305(2022).
[29] S. D. Girard, K. Baranger, C. Gauthier, M. Jacquet, A. Bernard, G. Escoffier, E. Marchetti, M. Khrestchatisky, S. Rivera, F. S. Roman. Evidence for early cognitive impairment related to frontal cortex in the 5xFAD mouse model of Alzheimer’s disease. J. Alzheimers Dis., 33, 781-796(2013).
[30] S. D. Girard, M. Jacquet, K. Baranger, M. Migliorati, G. Escoffier, A. Bernard, M. Khrestchatisky, F. Féron, S. Rivera, F. S. Roman, E. Marchetti. Onset of hippocampus-dependent memory impairments in 5xFAD transgenic mouse model of Alzheimer’s disease. Hippocampus, 24, 762-772(2014).
[31] R. A. Fisher, J. S. Miners, S. Love. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives. Brain Pathol., 32, e13061(2022).
[32] M. A. Bell, M. J. Ball. Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta Neuropathol., 53, 299-318(1981).
[33] T. Thomas, S. Miners, S. Love. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer’s disease and vascular dementia. Brain, 138, 1059-1069(2015).
[34] W. E. Sonntag, C. D. Lynch, P. T. Cooney, P. M. Hutchins. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology, 138, 3515-3520(1997).
[35] N. Wang, Y. Tan, Q. Zhou, R. Mao, Y. Yang. The impairment of the hippocampal neuro-vascular unit precedes changes in spatial cognition in naturally aged rats. Neurosci. Lett., 776, 136580(2022).
[36] B. S. Desai, J. A. Schneider, J. L. Li, P. M. Carvey, B. Hendey. Evidence of angiogenic vessels in Alzheimer’s disease. J. Neural Transm. (Vienna), 116, 587-597(2009).
[37] M. J. Burke, L. Nelson, J. Y. Slade, A. E. Oakley, A. A. Khundakar, R. N. Kalaria. Morphometry of the hippocampal microvasculature in post-stroke and age-related dementias. Neuropathol. Appl. Neurobiol., 40, 284-295(2014).
[38] F. Fernandez-Klett, L. Brandt, C. Fernández-Zapata, B. Abuelnor, J. Middeldorp, J. A. Sluijs, M. Curtis, R. Faull, L. W. Harris, S. Bahn, E. M. Hol, J. Priller. Denser brain capillary network with preserved pericytes in Alzheimer’s disease. Brain Pathol., 30, 1071-1086(2020).
[39] R. E. Bennett, A. B. Robbins, M. Hu, X. Cao, R. A. Betensky, T. Clark, S. Das, B. T. Hyman. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 115, e1289-e1298(2018).
[40] A. Giuliani, S. Sivilia, V. A. Baldassarro, M. Gusciglio, L. Lorenzini, M. Sannia, L. Calzà, L. Giardino. Age-related changes of the neurovascular unit in the cerebral cortex of Alzheimer disease mouse models: A neuroanatomical and molecular study. J. Neuropathol. Exp. Neurol., 78, 101-112(2019).
[41] K. C. Ahn, C. R. Learman, G. L. Dunbar, P. Maiti, W. C. Jang, H. C. Cha, M. S. Song. Characterization of impaired cerebrovascular structure in APP/PS1 mouse brains. Neuroscience, 385, 246-254(2018).
[42] S. Y. Kook, H. S. Hong, M. Moon, C. M. Ha, S. Chang, I. Mook-Jung. Aβ1−42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J. Neurosci., 32, 8845-8854(2012).
[43] S. Funahashi, J. M. Andreau. Prefrontal cortex and neural mechanisms of executive function. J. Physiol.-Paris, 107, 471-482(2013).
[44] A. Elhalal, E. J. Davelaar, M. Usher. The role of the frontal cortex in memory: an investigation of the Von Restorff effect. Front. Hum. Neurosci., 8, 410(2014).
[45] B. A. Gordon, J. M. Zacks, T. Blazey, T. L. Benzinger, J. C. Morris, A. M. Fagan, D. M. Holtzman, D. A. Balota. Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer’s disease biomarkers. Neurobiol. Aging, 36, 1771-1779(2015).
[46] M. G. Harrington, J. Chiang, J. M. Pogoda, M. Gomez, K. Thomas, S. D. Marion, K. J. Miller, P. Siddarth, X. Yi, F. Zhou, S. Lee, X. Arakaki, R. P. Cowan, T. Tran, C. Charleswell, B. D. Ross, A. N. Fonteh. Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One, 8, e79378(2013).
[47] H. Oakley, S. L. Cole, S. Logan, E. Maus, P. Shao, J. Craft, A. Guillozet-Bongaarts, M. Ohno, J. Disterhoft, L. Van Eldik, R. Berry, R. Vassar. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci., 26, 10129-10140(2006).
Get Citation
Copy Citation Text
Xi Li, Zhongyang Zhang, Hua Shi, Feifan Zhou. Characterization of cerebrovascular changes in Alzheimer’s disease mice by photoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450007
Category: Research Articles
Received: Jan. 3, 2024
Accepted: Apr. 2, 2024
Published Online: Nov. 13, 2024
The Author Email: Hua Shi (huashi@hainanu.edu.cn), Feifan Zhou (zhouff@hainanu.edu.cn)