International Journal of Extreme Manufacturing, Volume. 5, Issue 4, 42012(2023)
Femtosecond laser direct writing of functional stimulus-responsive structures and applications
[1] [1] Chen J, Wu J N and Yan S Z 2015 Switchable wettability of the honeybee’s tongue surface regulated by erectable glossal hairs J. Insect Sci. 15 164
[2] [2] Teyssier J, Saenko S V, van der Marel D and Milinkovitch M C 2015 Photonic crystals cause active colour change in chameleons Nat. Commun. 6 6368
[3] [3] Reyssat E and Mahadevan L 2009 Hygromorphs: from pine cones to biomimetic bilayers J. R. Soc. Interface 6 951–7
[4] [4] Armon S, Efrati E, Kupferman R and Sharon E 2011 Geometry and mechanics in the opening of chiral seed pods Science 333 1726–30
[5] [5] Elbaum R, Zaltzman L, Burgert I and Fratzl P 2007 The role of wheat awns in the seed dispersal unit Science 316 884–6
[6] [6] Volkov A G, Foster J C, Baker K D and Markin V S 2010 Mechanical and electrical anisotropy in Mimosa pudica pulvini Plant Signal. Behav. 5 1211–21
[7] [7] Vandenbrink J P, Brown E A, Harmer S L and Blackman B K 2014 Turning heads: the biology of solar tracking in sunflower Plant Sci. 224 20–26
[8] [8] LiS,ZengY, HouW, Wan W, ZhangJN,WangYL,DuX and Gu Z Z 2020 Photo-responsive photonic hydrogel: in situ manipulation and monitoring of cell scaffold stiffness Mater. Horiz. 7 2944–50
[9] [9] Gelmi A and Schutt C E 2021 Stimuli-responsive biomaterials: scaffolds for stem cell control Adv. Healthcare Mater. 10 2001125
[10] [10] Xin C et al 2021 Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment ACS Nano 15 18048–59
[11] [11] Zhang Q Y, He L L, Zhang X F, Tian D L and Jiang L 2020 Switchable direction of liquid transport via an anisotropic microarray surface and thermal stimuli ACS Nano 14 1436–44
[12] [12] QuMN,MaLL,WangJX,ZhangY, ZhaoY, ZhouYC, Liu X R and He J M 2019 Multifunctional superwettable material with smart pH responsiveness for efficient and controllable oil/water separation and emulsified wastewater purification ACS Appl. Mater. Interfaces 11 24668–82
[13] [13] Zhao Y H, Wu Y, Wang L, Zhang M M, Chen X, Liu M J, Fan J, Liu J Q, Zhou F and Wang Z K 2017 Bio-inspired reversible underwater adhesive Nat. Commun. 8 2218
[14] [14] Xiao Y-Y, Jiang Z-C, Tong X and Zhao Y 2019 Biomimetic locomotion of electrically powered “janus” soft robots using a liquid crystal polymer Adv. Mater. 31 1903452
[15] [15] Ze Q J, Kuang X, Wu S, Wong J, Montgomery S M, Zhang R D, KovitzJ M,Yang F Y, QiH J and Zhao R K 2020 Magnetic shape memory polymers with integrated multifunctional shape manipulation Adv. Mater. 32 1906657
[16] [16] Xin C et al 2019 Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery Adv. Mater. 31 1808226
[17] [17] Hines L, Petersen K, Lum G Z and Sitti M 2017 Soft actuators for small-scale robotics Adv. Mater. 29 1603483
[18] [18] Hippler M, Blasco E, Qu J Y, Tanaka M, Barner-Kowollik C, Wegener M and Bastmeyer M 2019 Controlling the shape of 3D microstructures by temperature and light Nat. Commun. 10 232
[19] [19] Huang T-Y, Huang H-W, Jin D D, Chen Q Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional micro-building blocks Sci. Adv. 6 eaav8219
[20] [20] XiaYL,HeY, ZhangFH,LiuYJandLengJS2021A review of shape memory polymers and composites: mechanisms, materials, and applications Adv. Mater. 33 2000713
[21] [21] Bai X, Yang Q, Fang Y, Yong J L, Bai Y K, Zhang J W, Hou X and Chen F 2020 Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation Chem. Eng. J. 400 125930
[22] [22] Del Pozo M, Sol J A H P, Schenning A P H J and Debije M G 2022 4D printing of liquid crystals: what’s right for me? Adv. Mater. 34 2104390
[23] [23] White T J and Broer D J 2015 Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers Nat. Mater. 14 1087–98
[24] [24] RanC,WangJC,HeYG,RenQ,HuH,ZhuJQ,GuXX, Li M, Zheng L and Li J 2022 Recent advances in bioinspired hydrogels with environment-responsive characteristics for biomedical applications Macromol. Biosci. 22 2100474
[25] [25] Downs F G, Lunn D J, Booth M J, Sauer J B, Ramsay W J, Klemperer R G, Hawker C J and Bayley H 2020 Multi-responsive hydrogel structures from patterned droplet networks Nat. Chem. 12 363–71
[26] [26] Apsite I, Salehi S and Ionov L 2022 Materials for smart soft actuator systems Chem. Rev. 122 1349–415
[27] [27] Li J H and Pumera M 2021 3D printing of functional microrobots Chem. Soc. Rev. 50 2794–838
[28] [28] Wallin T J, Pikul J and Shepherd R F 2018 3D printing of soft robotic systems Nat. Rev. Mater. 3 84–100
[29] [29] Wu D, Leng Y-M, Fan C-J, Xu Z-Y, Li L, Shi L-Y, Yang K-K and Wang Y-Z 2022 4D printing of a fully biobased shape memory copolyester via a UV-assisted FDM strategy ACS Sustain. Chem. Eng. 10 6304–12
[30] [30] Kuang X, Roach D J, Wu J T, Hamel C M, Ding Z, Wang T J, Dunn M L and Qi H J 2019 Advances in 4D printing: materials and applications Adv. Funct. Mater. 29 1805290
[31] [31] JiangP, ZhangYX,MuXX,LiuDS,LiuYH,GuoR, Ji Z Y, Wang X Z and Wang X L 2022 Grayscale stereolithography of gradient hydrogel with site-selective shape deformation Adv. Mater. Technol. 7 2101288
[32] [32] Zhang Y H, Zhang F, Yan Z, Ma Q, Li X L, Huang Y G and Rogers J A 2017 Printing, folding and assembly methods for forming 3D mesostructures in advanced materials Nat. Rev. Mater. 2 17019
[33] [33] Namvar N, Zolfagharian A, Vakili-Tahami F and Bodaghi M 2022 Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing Smart Mater. Struct. 31 055021
[34] [34] Huang H-W, Sakar M S, Petruska A J, Pané S and Nelson B J 2016 Soft micromachines with programmable motility and morphology Nat. Commun. 7 12263
[35] [35] Kachwal V and Tan J-C 2023 Stimuli-responsive electrospun fluorescent fibers augmented with aggregation-induced emission (AIE) for smart applications Adv. Sci. 10 2204848
[36] [36] Wang W, Li P-F, Xie R, Ju X-J, Liu Z and Chu L-Y 2022 Designable micro-/nano-structured smart polymeric materials Adv. Mater. 34 2107877
[37] [37] Jaiswal A, Rastogi C K, Rani S, Singh G P, Saxena S and Shukla S 2023 Two decades of two-photon lithography: materials science perspective for additive manufacturing of 2D/3D nano-microstructures iScience 26 106374
[38] [38] Greant C, Van Durme B, Van Hoorick J and Van Vlierberghe S 2023 Multiphoton lithography as a promising tool for biomedical applications Adv. Funct. Mater. 2212641
[39] [39] Xu Y, Yu G, Nie R Q and Wu Z G 2022 Microfluidic systems toward blood hemostasis monitoring and thrombosis diagnosis: from design principles to micro/nano fabrication technologies View 3 20200183
[40] [40] Zhan Y, Cheng Q F, Song Y L and Li M Z 2022 Micro-nano structure functionalized perovskite optoelectronics: from structure functionalities to device applications Adv. Funct. Mater. 32 2200385
[41] [41] Huang Z Y, Shao G B and Li L Q 2023 Micro/nano functional devices fabricated by additive manufacturing Prog. Mater. Sci. 131 101020
[42] [42] Sugioka K and Cheng Y 2014 Ultrafast lasers—reliable tools for advanced materials processing Light Sci. Appl. 3 e149
[43] [43] Sugioka K 2019 Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review Int. J. Extrem. Manuf. 1 012003
[44] [44] Liu H G, Lin W X and Hong M H 2021 Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications Light Sci. Appl. 10 162
[45] [45] ChenZJ,YangJ,LiuHB,ZhaoYXandPan R2022A short review on functionalized metallic surfaces by ultrafast laser micromachining Int. J. Adv. Manuf. Technol. 119 6919–48
[46] [46] WangJS,FangFZ,AnHJ,Wu S,QiHM,CaiYXand Guo G Y 2023 Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales Int. J. Extrem. Manuf. 5 012005
[47] [47] Lin Z Y and Hong M H 2021 Femtosecond laser precision engineering: from micron, submicron, to nanoscale Ultrafast Sci. 2021 9783514
[48] [48] Wang A D, Sope.na P and Grojo D 2022 Burst mode enabled ultrafast laser inscription inside gallium arsenide Int. J. Extrem. Manuf. 4 045001
[49] [49] Liu H, Zhang L, Huang J Y, Mao J J, Chen Z, Mao Q H, Ge M Z and Lai Y K 2022 Smart surfaces with reversibly switchable wettability: concepts, synthesis and applications Adv. Colloid Interface Sci. 300 102584
[50] [50] Jiang S J et al 2019 Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration Adv. Mater. 31 1807507
[51] [51] Jiang S J et al 2020 Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer Nano Lett. 20 7519–29
[52] [52] Ma Z-C, Hu X-Y, Zhang Y-L, Liu X-Q, Hou Z-S, Niu L-G, Zhu L, Han B, Chen Q-D and Sun H-B 2019 Smart compound eyes enable tunable imaging Adv. Funct. Mater. 29 1903340
[53] [53] HouZS,SunSM,ZhengBY, YangRZandLiAW2015 Stimuli-responsive protein-based micro/nano-waveguides RSC Adv. 5 77847–50
[54] [54] He Z Q, Lee Y-H, Chanda D and Wu S-T 2018 Adaptive liquid crystal microlens array enabled by two-photon polymerization Opt. Express 26 21184–93
[55] [55] Jin D D, Chen Q Y, Huang T-Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional direct laser writing of reconfigurable compound micromachines Mater. Today 32 19–25
[56] [56] Zhang J et al 2022 Ultrafast laser-ablated bioinspired hydrogel-based porous gating system for sustained drug release ACS Appl. Mater. Interfaces 14 35366–75
[57] [57] Pennacchio F A, Fedele C, De Martino S, Cavalli S, Vecchione R and Netti P A 2018 Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system ACS Appl. Mater. Interfaces 10 91–97
[58] [58] Eaton S M, Cerullo G and Osellame R 2012 Fundamentals of femtosecond laser modification of bulk dielectrics Femtosecond Laser Micromachining ed R Osellame, G Cerullo and R Ramponi (Springer) pp 3–18
[59] [59] Schaffer C B, Brodeur A and Mazur E 2001 Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses Meas. Sci. Technol. 12 1784–94
[60] [60] Stoian R, Rosenfeld A, Ashkenasi D, Hertel I V, Bulgakova N M and Campbell E E B 2002 Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation Phys. Rev. Lett. 88 097603
[61] [61] Nedialkov N N, Imamova S E and Atanasov P A 2004 Ablation of metals by ultrashort laser pulses J. Phys. D: Appl. Phys. 37 638–43
[62] [62] Ashitkov S I, Komarov P S, Ovchinnikov A V, Struleva E V, Zhakhovskii V V, Inogamov N A and Agranat M B 2014 Ablation and nanostructuring of metals by femtosecond laser pulses Quantum Electron. 44 535–9
[63] [63] Anisimov S I and Luk’yanchuk B S 2002 Selected problems of laser ablation theory Phys.-Usp. 45 293–324
[64] [64] Yang J, Zhao Y and Zhu X 2007 Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion Appl. Phys. A 89 571–8
[65] [65] Bulgakova N M and Bourakov I M 2002 Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt Appl. Surf. Sci. 197–198 41–44
[66] [66] Bouilly D, Perez D and Lewis L J 2007 Damage in materials following ablation by ultrashort laser pulses: a molecular-dynamics study Phys. Rev. B 76 184119
[67] [67] Perez D and Lewis L J 2002 Ablation of solids under femtosecond laser pulses Phys. Rev. Lett. 89 255504
[68] [68] von der Linde D, Sokolowski-Tinten K and Bialkowski J 1997 Laser–solid interaction in the femtosecond time regime Appl. Surf. Sci. 109–110 1–10
[69] [69] Rethfeld B, Sokolowski-Tinten K, von der Linde D and Anisimov S I 2004 Timescales in the response of materials to femtosecond laser excitation Appl. Phys. A 79 767–9
[70] [70] Hohlfeld J, Wellershoff S-S, Güdde J, Conrad U, J.hnke V and Matthias E 2000 Electron and lattice dynamics following optical excitation of metals Chem. Phys. 251 237–58
[71] [71] Liu X, Du D and Mourou G 1997 Laser ablation and micromachining with ultrashort laser pulses IEEE J. Quantum Electron. 33 1706–16
[72] [72] Mannion P T, Magee J, Coyne E, O’Connor G M and Glynn T J 2004 The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air Appl. Surf. Sci. 233 275–87
[73] [73] Anisimov S I, Kapeliovich B L and Perel’man T L 1974 Electron emission from metal surfaces exposed to ultrashort laser pulses Sov. Phys -JETP 39 375–7
[74] [74] Jiang L and Tsai H-L 2005 Improved two-temperature model and its application in ultrashort laser heating of metal films J. Heat Transfer 127 1167–73
[75] [75] Darkins R and Duffy D M 2018 Modelling radiation effects in solids with two-temperature molecular dynamics Comput. Mater. Sci. 147 145–53
[76] [76] Povarnitsyn M E, Fokin V B and Levashov P R 2015 Microscopic and macroscopic modeling of femtosecond laser ablation of metals Appl. Surf. Sci. 357 1150–6
[77] [77] Li X and Jiang L 2012 Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation Appl. Phys. A 109 367–76
[78] [78] Ahmmed K M T, Grambow C and Kietzig A-M 2014 Fabrication of micro/nano structures on metals by femtosecond laser micromachining Micromachines 5 1219–53
[79] [79] Sundaram S K and Mazur E 2002 Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses Nat. Mater. 1 217–24
[80] [80] Balling P and Schou J 2013 Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films Rep. Prog. Phys. 76 036502
[81] [81] Mihailov S J, Grobnic D, Hnatovsky C, Walker R B, Lu P, Coulas D and Ding H M 2017 Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings Sensors 17 2909
[82] [82] Wu MT, GuoB,ZhaoQL,HeP, ZengZQandZangJ2018 The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond Opt. Laser Technol. 106 34–39
[83] [83] Henyk M, Mitzner R, Wolfframm D and Reif J 2000 Laser-induced ion emission from dielectrics Appl. Surf. Sci. 154–155 249–55
[84] [84] Maruo S, Nakamura O and Kawata S 1997 Three-dimensional microfabrication with two-photon-absorbed photopolymerization Opt. Lett. 22 132–4
[85] [85] Skliutas E, Lebedevaite M, Kabouraki E, Baldacchini T, Ostrauskaite J, Vamvakaki M, Farsari M, Juodkazis S and Malinauskas M 2021 Polymerization mechanisms initiated by spatio-temporally confined light Nanophotonics 10 1211–42
[86] [86] Gonzalez-Hernandez D, Varapnickas S, Bertoncini A, Liberale C and Malinauskas M 2023 Micro-optics 3D printed via multi-photon laser lithography Adv. Opt. Mater. 11 2201701
[87] [87] Cumpston B H et al 1999 Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication Nature 398 51–54
[88] [88] Bin F-C, Guo M, Li T, Zheng Y-C, Dong X-Z, Liu J, Jin F and Zheng M-L 2023 Carbazole-based anion ionic water-soluble two-photon initiator for achieving 3D hydrogel structures Adv. Funct. Mater. 2300293
[89] [89] Harinarayana V and Shin Y C 2021 Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review Opt. Laser Technol. 142 107180
[90] [90] Liaros N and Fourkas J T 2017 The characterization of absorptive nonlinearities Laser Photonics Rev. 11 1700106
[91] [91] Fischer J, Mueller J B, Kaschke J, Wolf T J A, Unterreiner A N and Wegener M 2013 Three-dimensional multi-photon direct laser writing with variable repetition rate Opt. Express 21 26244–60
[92] [92] LiuKL,DingHB,LiS,NiuYF, ZengY, ZhangJN,DuX and Gu Z Z 2022 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography Nat. Commun. 13 4563
[93] [93] WangXD,Yu HB,LiPW, ZhangYZ,Wen YD,QiuY, Liu Z, Li Y P and Liu L Q 2021 Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review Opt. Laser Technol. 135 106687
[94] [94] Xing J-F, Dong X-Z, Chen W-Q, Duan X-M, Takeyasu N, Tanaka T and Kawata S 2007 Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency Appl. Phys. Lett. 90 131106
[95] [95] Ligon S C, Husár B, Wutzel H, Holman R and Liska R 2014 Strategies to reduce oxygen inhibition in photoinduced polymerization Chem. Rev. 114 557–89
[96] [96] Yang L, Münchinger A, Kadic M, Hahn V, Mayer F, Blasco E, Barner-Kowollik C and Wegener M 2019 On the Schwarzschild effect in 3D two-photon laser lithography Adv. Opt. Mater. 7 1901040
[97] [97] Bauer J, Guell Izard A, Zhang Y F, Baldacchini T and Valdevit L 2019 Programmable mechanical properties of two-photon polymerized materials: from nanowires to bulk Adv. Mater. Technol. 4 1900146
[98] [98] Henning I, Woodward A W, Rance G A, Paul B T, Wildman R D, Irvine D J and Moore J C 2020 A click chemistry strategy for the synthesis of efficient photoinitiators for two-photon polymerization Adv. Funct. Mater. 30 2006108
[99] [99] Xia H, Wang J, Tian Y, Chen Q-D, Du X-B, Zhang Y-L, He Y and Sun H-B 2010 Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization Adv. Mater. 22 3204–7
[100] [100] Xin C et al 2022 Rapid and multimaterial 4D printing of shape-morphing micromachines for narrow micronetworks traversing Small 18 2202272
[101] [101] Ennis A, Nicdao D, Kolagatla S, Dowling L, Tskhe Y, Thompson A J, Trimble D, Delaney C and Florea L 2023 Two-photon polymerization of sugar responsive 4D microstructures Adv. Funct. Mater. 2213947
[102] [102] Sugioka K and Cheng Y 2014 Femtosecond laser three-dimensional micro-and nanofabrication Appl. Phys. Rev. 1 041303
[103] [103] Kawata S, Sun H-B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8
[104] [104] Calin B S and Paun I A 2022 A review on stimuli-actuated 3D micro/nanostructures for tissue engineering and the potential of laser-direct writing via two-photon polymerization for structure fabrication Int. J. Mol. Sci. 23 14270
[105] [105] Jia Y X et al 2022 Covalent adaptable microstructures via combining two-photon laser printing and alkoxyamine chemistry: toward living 3D microstructures Adv. Funct. Mater. 2207826
[106] [106] Gauci S C, Gernhardt M, Frisch H, Houck H A, Blinco J P, Blasco E, Tuten B T and Barner-Kowollik C 2022 3D printed microstructures erasable by darkness Adv. Funct. Mater. 2206303
[107] [107] Ocier C R et al 2020 Direct laser writing of volumetric gradient index lenses and waveguides Light Sci. Appl. 9 196
[108] [108] Aderneuer T, Fernández O and Ferrini R 2021 Two-photon grayscale lithography for free-form micro-optical arrays Opt. Express 29 39511–20
[109] [109] Porte X, Dinc N U, Moughames J, Panusa G, Juliano C, Kadic M, Moser C, Brunner D and Psaltis D 2021 Direct (3+1)D laser writing of graded-index optical elements Optica 8 1281–7
[110] [110] Sun Y-L, Dong W-F, Niu L-G, Jiang T, Liu D-X, Zhang L, Wang Y-S, Chen Q-D, Kim D-P and Sun H-B 2014 Protein-based soft micro-optics fabricated by femtosecond laser direct writing Light Sci. Appl. 3 e129
[111] [111] Serbin J, Egbert A, Ostendorf A, Chichkov B, Houbertz R, Domann G, Schulz J, Cronauer C, Fr.hlich L and Popall M 2003 Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics Opt. Lett. 28 301–3
[112] [112] Seet K K, Mizeikis V, Matsuo S, Juodkazis S and Misawa H 2005 Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing Adv. Mater. 17 541–5
[113] [113] Tian Z-N, Yao W-G, Xu J-J, Yu Y-H, Chen Q-D and Sun H-B 2015 Focal varying microlens array Opt. Lett. 40 4222–5
[114] [114] Dadras-Toussi O, Khorrami M, Louis Sam Titus A S C, Majd S, Mohan C and Abidian M R 2022 Multiphoton lithography of organic semiconductor devices for 3D printing of flexible electronic circuits, biosensors, and bioelectronics Adv. Mater. 34 2200512
[115] [115] Zhang Y-L, Chen Q-D, Xia H and Sun H-B 2010 Designable 3D nanofabrication by femtosecond laser direct writing Nano Today 5 435–48
[116] [116] Wei S X, Liu J, Zhao Y Y, Zhang T B, Zheng M L, Jin F, Dong X Z, Xing J F and Duan X M 2017 Protein-based 3D microstructures with controllable morphology and pH-responsive properties ACS Appl. Mater. Interfaces 9 42247–57
[117] [117] Li Q, Kulikowski J, Doan D, Tertuliano O A, Zeman C J, Wang M M, Schatz G C and Gu X W 2022 Mechanical nanolattices printed using nanocluster-based photoresists Science 378 768–73
[118] [118] Huang Z J, Tsui G C P, Deng Y and Tang C-Y 2020 Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications Nanotechnol. Rev. 9 1118–36
[119] [119] LaoZX,XiaN,WangSJ,XuTT, Wu XYandZhangL 2021 Tethered and untethered 3D microactuators fabricated by two-photon polymerization: a review Micromachines 12 465
[120] [120] Ren L Q, Nama N, Mcneill J M, Soto F, Yan Z F, Liu W, Wang W, Wang J and Mallouk T E 2019 3D steerable, acoustically powered microswimmers for single-particle manipulation Sci. Adv. 5 eaax3084
[121] [121] Jeon S et al 2019 Magnetically actuated microrobots as a platform for stem cell transplantation Sci. Robot. 4 eaav4317
[122] [122] Li G et al 2016 Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration J. Mater. Chem. A 4 18832–40
[123] [123] Albu C, Dinescu A, Filipescu M, Ulmeanu M and Zamfirescu M 2013 Periodical structures induced by femtosecond laser on metals in air and liquid environments Appl. Surf. Sci. 278 347–51
[124] [124] Zhang Z et al 2017 A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage Nanoscale 9 15796–803
[125] [125] Wu D et al 2020 High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays Adv. Mater. 32 2005039
[126] [126] JiaTQ,ChenHX,HuangM,ZhaoFL,QiuJR,LiRX, Xu Z Z, He X K, Zhang J and Kuroda H 2005 Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses Phys. Rev. B 72 125429
[127] [127] van Driel H M, Sipe J E and Young J F 1982 Laser-induced periodic surface structure on solids: a universal phenomenon Phys. Rev. Lett. 49 1955–8
[128] [128] Birnbaum M 1965 Semiconductor surface damage produced by ruby lasers J. Appl. Phys. 36 3688–9
[129] [129] Wang Y, Wang Y and Zhdanov A 2019 Review of femtosecond laser induced surface periodic structure Proc. SPIE 11193 111930V
[130] [130] Zhang D S, Liu R J and Li Z G 2022 Irregular LIPSS produced on metals by single linearly polarized femtosecond laser Int. J. Extrem. Manuf. 4 015102
[131] [131] Volkov S N, Kaplan A E and Miyazaki K 2009 Evanescent field at nanocorrugated dielectric surface Appl. Phys. Lett. 94 041104
[132] [132] Rudenko A, Mauclair C, Garrelie F, Stoian R and Colombier J-P 2019 Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves Nanophotonics 8 459–65
[133] [133] Sipe J E, Young J F, Preston J S and van Driel H M 1983 Laser-induced periodic surface structure. I. Theory Phys. Rev. B 27 1141–54
[134] [134] Bonse J, Rosenfeld A and Krüger J 2009 On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses J. Appl. Phys. 106 104910
[135] [135] Nathala C S R, Ajami A, Ionin A A, Kudryashov S I, Makarov S V, Ganz T, Assion A and Husinsky W 2015 Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium Opt. Express 23 5915–29
[136] [136] Wu MT, GuoB,ZhaoQL,Fan RW, DongZWandYu X 2018 The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface Opt. Laser. Eng. 105 60–67
[137] [137] Qi L T, Nishii K and Namba Y 2009 Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel Opt. Lett. 34 1846–8
[138] [138] LiuY, LiSY, NiuSC,CaoXW, HanZWandRenLQ 2016 Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate Appl. Surf. Sci. 379 230–7
[139] [139] Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S, H.hm S, Rosenfeld A and Krüger J 2015 Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel Appl. Surf. Sci. 336 21–27
[140] [140] Long J Y, Fan P X, Zhong M L, Zhang H J, Xie Y D and Lin C 2014 Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures Appl. Surf. Sci. 311 461–7
[141] [141] Jiang H-B, Zhang Y-L, Liu Y, Fu X-Y, Li Y-F, Liu Y-Q, Li C-H and Sun H-B 2016 Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil Laser Photonics Rev. 10 441–50
[142] [142] LiCZ et al 2021 Noncontact all-in-situ reversible reconfiguration of femtosecond laser-induced shape memory magnetic microcones for multifunctional liquid droplet manipulation and information encryption Adv. Funct. Mater. 31 2100543
[143] [143] Wu JR,HeJ,YinK,ZhuZ,XiaoS,Wu ZPandDuanJ-A 2021 Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling Nano Lett. 21 4209–16
[144] [144] Guo Y, Qiu P, Xu S L and Cheng G J 2022 Laser-induced microjet-assisted ablation for high-quality microfabrication Int. J. Extrem. Manuf. 4 035101
[145] [145] Sohn I-B, Choi H-K, Noh Y-C, Kim J and Ahsan S 2019 Laser assisted fabrication of micro-lens array and characterization of their beam shaping property Appl. Surf. Sci. 479 375–85
[146] [146] Shimotsuma Y, Hirao K, Kazansky P G and Qiu J R 2005 Three-dimensional micro-and nano-fabrication in transparent materials by femtosecond laser Jpn. J. Appl. Phys. 44 4735–48
[147] [147] Liao C R, Li Y H, Wang D N, Sun T and Grattan K T V 2010 Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by femtosecond laser IEEE Sens. J. 10 1675–81
[148] [148] Chen F and de Aldana J R V 2014 Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining Laser Photonics Rev. 8 251–75
[149] [149] Zhang C, Dong N N, Yang J, Chen F, de Aldana J R V and Lu Q M 2011 Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription Opt. Express 19 12503–8
[150] [150] Jia Y C, Dong N N, Chen F, de Aldana J R V, Akhmadaliev S and Zhou S Q 2012 Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd: YAG single crystals Opt. Mater. Express 2 657–62
[151] [151] Ams M, Dekker P, Marshall G D and Withford M J 2012 Ultrafast laser-written dual-wavelength waveguide laser Opt. Lett. 37 993–5
[152] [152] Della Valle G, Taccheo S, Osellame R, Festa A, Cerullo G and Laporta P 2007 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing Opt. Express 15 3190–4
[153] [153] Wang M H, Zhao K H, Wu J Y, Li Y Q, Yang Y, Huang S, Zhao J R, Tweedle T, Carpenter D and Zheng G Q 2021 Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications Int. J. Extrem. Manuf. 3 025401
[154] [154] Watanabe W, Asano T, Yamada K, Itoh K and Nishii J 2003 Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses Opt. Lett. 28 2491–3
[155] [155] Butkut. A and Jonusauskas L 2021 3D manufacturing of glass microstructures using femtosecond laser Micromachines 12 499
[156] [156] Itoh K, Watanabe W, Nolte S and Schaffer C B 2006 Ultrafast processes for bulk modification of transparent materials MRS Bull. 31 620–5
[157] [157] Sakakura M, Lei Y H, Wang L, Yu Y-H and Kazansky P G 2020 Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass Light Sci. Appl. 9 15
[158] [158] Sun Y-K, Zhang X-L, Yu F, Tian Z-N, Chen Q-D and Sun H-B 2022 Non-Abelian Thouless pumping in photonic waveguides Nat. Phys. 18 1080–5
[159] [159] Wolf A, Dostovalov A, Bronnikov K and Babin S 2019 Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses Opt. Express 27 13978–90
[160] [160] Zhang X-L, Yu F, Chen Z-G, Tian Z-N, Chen Q-D, Sun H-B and Ma G C 2022 Non-Abelian braiding on photonic chips Nat. Photon. 16 390–5
[161] [161] Wei D Z et al 2018 Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal Nat. Photon. 12 596–600
[162] [162] Li Y, Liu H G and Hong M H 2020 High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation Opt. Express 28 6242–50
[163] [163] ShaoKX,JiangSJ,HuYL,ZhangYY, LiCZ, Zhang Y X, Li J W, Wu D and Chu J R 2022 Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport Adv. Funct. Mater. 32 2205831
[164] [164] Deng C, Kim H and Ki H 2019 Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition Opt. Express 27 28679–91
[165] [165] Liu X-Q, Bai B-F, Chen Q-D and Sun H-B 2019 Etching-assisted femtosecond laser modification of hard materials Opto Electron. Adv. 2 190021
[166] [166] Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R, Matsuo S and Okada T 2006 Control over the crystalline state of sapphire Adv. Mater. 18 1361–4
[167] [167] Liu X-Q, Yang S-N, Yu L, Chen Q-D, Zhang Y-L and Sun H-B 2019 Rapid engraving of artificial compound eyes from curved sapphire substrate Adv. Funct. Mater. 29 1900037
[168] [168] Ródenas A, Gu M, Corrielli G, Paiè P, John S, Kar A K and Osellame R 2019 Three-dimensional femtosecond laser nanolithography of crystals Nat. Photon. 13 105–9
[169] [169] LiuHG,LiY, LinWXandHongMH2020 High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation Opt. Laser Technol. 132 106472
[170] [170] Li M J, Yang T Z, Yang Q, Fang Z, Bian H, Zhang C J, Hou X and Chen F 2022 Bioinspired anti-fogging and anti-fouling artificial compound eyes Adv. Opt. Mater. 10 2200861
[171] [171] LiCZ et al 2022 Laser-induced morphology-switchable slanted shape memory microcones for maneuvering liquid droplets and dry adhesion Appl. Phys. Lett. 120 061603
[172] [172] Zhang Y X et al 2022 Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation Nano Lett. 22 2923–33
[173] [173] LiuZM,LiM,DongXG,RenZY, HuWQandSittiM 2022 Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing Nat. Commun. 13 2016
[174] [174] Tiryaki M E and Sitti M 2022 Magnetic resonance imaging-based tracking and navigation of submillimeter-scale wireless magnetic robots Adv. Intell. Syst. 4 2100178
[175] [175] Li R et al 2022 Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation Natl Sci. Rev. 9 nwac163
[176] [176] Song X, Sun R J, Wang R, Zhou K, Xie R X, Lin J L, Georgiev D, Paraschiv A-A, Zhao R B and Stevens M M 2022 Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery Adv. Mater. 34 2204791
[177] [177] TangYC,LiMT, WangTL,DongXG,HuWQand Sitti M 2022 Wireless miniature magnetic phase-change soft actuators Adv. Mater. 34 2204185
[178] [178] Kim S, Lee S, Lee J, Nelson B J, Zhang L and Choi H 2016 Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation Sci. Rep. 6 30713
[179] [179] Yasa I C, Tabak A F, Yasa O, Ceylan H and Sitti M 2019 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery Adv. Funct. Mater. 29 1808992
[180] [180] Bozuyuk U, Yasa O, Yasa I C, Ceylan H, Kizilel S and Sitti M 2018 Light-triggered drug release from 3D-printed magnetic chitosan microswimmers ACS Nano 12 9617–25
[181] [181] Sun H C M, Liao P, Wei T Y, Zhang L and Sun D 2020 Magnetically powered biodegradable microswimmers Micromachines 11 404
[182] [182] Mhanna R, Qiu F M, Zhang L, Ding Y, Sugihara K, Zenobi-Wong M and Nelson B J 2014 Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery Small 10 1953–7
[183] [183] Xu H F, Medina-Sánchez M and Schmidt O G 2020 Magnetic micromotors for multiple motile sperm cells capture, transport, and enzymatic release Angew. Chem., Int. Ed. 59 15029–37
[184] [184] Alc.antara C C J, Landers F C, Kim S, De Marco C, Ahmed D, Nelson B J and Pané S 2020 Mechanically interlocked 3D multi-material micromachines Nat. Commun. 11 5957
[185] [185] HuXH,Yasa IC,RenZY, GouduSR,CeylanH,Hu WQ and Sitti M 2021 Magnetic soft micromachines made of linked microactuator networks Sci. Adv. 7 eabe8436
[186] [186] Hsu L-Y, Mainik P, Münchinger A, Lindenthal S, Spratte T, Welle A, Zaumseil J, Selhuber-Unkel C, Wegener M and Blasco E 2023 A facile approach for 4D microprinting of multi-photoresponsive actuators Adv. Mater. Technol. 8 2200801
[187] [187] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H and Wiersma D 2015 Optically controlled elastic microcavities Light Sci. Appl. 4 e282
[188] [188] Yong J L, Chen F, Yang Q, Farooq U and Hou X 2015 Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces J. Mater. Chem. A 3 10703–9
[189] [189] Nocentini S, Martella D, Parmeggiani C, Zanotto S and Wiersma D S 2018 Structured optical materials controlled by light Adv. Opt. Mater. 6 1800167
[190] [190] Nocentini S, Riboli F, Burresi M, Martella D, Parmeggiani C and Wiersma D S 2018 Three-dimensional photonic circuits in rigid and soft polymers tunable by light ACS Photonics 5 3222–30
[191] [191] Chen L, Dong Y Q, Tang C-Y, Zhong L, Law W-C, Tsui G C P, Yang Y K and Xie X L 2019 Development of direct-laser-printable light-powered nanocomposites ACS Appl. Mater. Interfaces 11 19541–53
[192] [192] Zanotto S, Sgrignuoli F, Nocentini S, Martella D, Parmeggiani C and Wiersma D S 2019 Multichannel remote polarization control enabled by nanostructured liquid crystalline networks Appl. Phys. Lett. 114 201103
[193] [193] Nishiguchi A, Zhang H, Schweizerhof S R, Schulte M F, Mourran A and M.ller M 2020 4D printing of a light-driven soft actuator with programmed printing density ACS Appl. Mater. Interfaces 12 12176–85
[194] [194] Jamil F, Pokharel M and Park K 2022 Light-controlled microbots in biomedical application: a review Appl. Sci. 12 11013
[195] [195] Münchinger A, Hsu L-Y, Fürni. F, Blasco E and Wegener M 2022 3D optomechanical metamaterials Mater. Today 59 9–17
[196] [196] Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M and Wiersma D S 2015 Light-fueled microscopic walkers Adv. Mater. 27 3883–7
[197] [197] Martella D, Antonioli D, Nocentini S, Wiersma D S, Galli G, Laus M and Parmeggiani C 2017 Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture RSC Adv. 7 19940–7
[198] [198] Ulrich S, Wang X P, Rottmar M, Rossi R M, Nelson B J, Bruns N, Müller R, Maniura-Weber K, Qin X-H and Boesel L F 2021 Nano-3D-printed photochromic micro-objects Small 17 2101337
[199] [199] Zheng C L, Jin F, Zhao Y Y, Zheng M L, Liu J, Dong X Z, Xiong Z, Xia Y Z and Duan X M 2020 Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabrication Sens. Actuators B 304 127345
[200] [200] Bai X, Yang Q, Li H Y, Huo J L, Liang J, Hou X and Chen F 2022 Sunlight recovering the superhydrophobicity of a femtosecond laser-structured shape-memory polymer Langmuir 38 4645–56
[201] [201] DengCS,LiuYC,Fan XH,JiaoBZ,ZhangZX, Zhang M D, Chen F Y, Gao H, Deng L M and Xiong W 2023 Femtosecond laser 4D printing of light-driven intelligent micromachines Adv. Funct. Mater. 33 2211473
[202] [202] Woska S et al 2020 Tunable photonic devices by 3D laser printing of liquid crystal elastomers Opt. Mater. Express 10 2928–43
[203] [203] Tudor A, Delaney C, Zhang H R, Thompson A J, Curto V F, Yang G-Z, Higgins M J, Diamond D and Florea L 2018 Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s Mater. Today 21 807–16
[204] [204] Spratte T, Geiger S, Colombo F, Mishra A, Taale M, Hsu L-Y, Blasco E and Selhuber-Unkel C 2023 Increasing the efficiency of thermoresponsive actuation at the microscale by direct laser writing of pNIPAM Adv. Mater. Technol. 8 2200714
[205] [205] Lee Y-W, Chun S, Son D, Hu X H, Schneider M and Sitti M 2022 A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot Adv. Mater. 34 2109325
[206] [206] JiQX et al 2021 4D Thermomechanical metamaterials for soft microrobotics Commun. Mater. 2 93
[207] [207] McCracken J M et al 2019 Microstructured photopolymerization of liquid crystalline elastomers in oxygen-rich environments Adv. Funct. Mater. 29 1903761
[208] [208] Zhang M C, Shahsavan H, Guo Y B, Pena-Francesch A, Zhang Y Y and Sitti M 2021 Liquid-crystal-elastomer-actuated reconfigurable microscale Kirigami metastructures Adv. Mater. 33 2008605
[209] [209] Guo Y B, Shahsavan H and Sitti M 2020 Microscale polarization color pixels from liquid crystal elastomers Adv. Opt. Mater. 8 1902098
[210] [210] Kubota H 1952 On hypersensitive polarization colors J. Opt. Soc. Am. 42 144–5
[211] [211] Zhang P, de Haan L T, Debije M G and Schenning A P H J 2022 Liquid crystal-based structural color actuators Light Sci. Appl. 11 248
[212] [212] Ye C H, Nikolov S V, Calabrese R, Dindar A, Alexeev A, Kippelen B, Kaplan D L and Tsukruk V V 2015 Self-(Un)rolling biopolymer microstructures: rings, tubules, and helical tubules from the same material Angew. Chem., Int. Ed. 54 8490–3
[213] [213] Hu L, Wan Y, Zhang Q and Serpe M J 2020 Harnessing the power of stimuli-responsive polymers for actuation Adv. Funct. Mater. 30 1903471
[214] [214] Sun Y-L, Dong W-F, Yang R-Z, Meng X, Zhang L, Chen Q-D and Sun H-B 2012 Dynamically tunable protein microlenses Angew. Chem., Int. Ed. 51 1558–62
[215] [215] Ma Z-C, Zhang Y-L, Han B, Hu X-Y, Li C-H, Chen Q-D and Sun H-B 2020 Femtosecond laser programmed artificial musculoskeletal systems Nat. Commun. 11 4536
[216] [216] Chen H M, Li Y, Liu Y, Gong T, Wang L and Zhou S B 2014 Highly pH-sensitive polyurethane exhibiting shape memory and drug release Polym. Chem. 5 5168–74
[217] [217] Chen J-K and Chang C-J 2014 Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review Materials 7 805–75
[218] [218] Chen Q Y, Lv P Y, Huang T-Y, Huang J Y and Duan H L 2020 Encoding smart microjoints for microcrawlers with enhanced locomotion Adv. Intell. Syst. 2 1900128
[219] [219] LaoZX,SunR,JinDD,RenZG,XinC,ZhangYC, Jiang S J, Zhang Y Y and Zhang L 2021 Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters Int. J. Extrem. Manuf. 3 025001
[220] [220] Wen HJ,ZengXZ,XuXX,LiWY, XieF, XiongZ, Song S C, Wang B, Li X P and Cao Y Y 2021 Reversible data encryption-decryption using a pH stimuli-responsive hydrogel J. Mater. Chem. C 9 2455–63
[221] [221] Wang J-Y, Jin F, Dong X-Z, Liu J and Zheng M-L 2022 Flytrap inspired pH-driven 3D hydrogel actuator by femtosecond laser microfabrication Adv. Mater. Technol. 7 2200276
[222] [222] HuYL et al 2020 Botanical-inspired 4D printing of hydrogel at the microscale Adv. Funct. Mater. 30 1907377
[223] [223] Fratzl P and Barth F G 2009 Biomaterial systems for mechanosensing and actuation Nature 462 442–8
[224] [224] Cesnik S, Perrotta A, Cian A, Tormen M, Bergmann A and Coclite A M 2022 Humidity responsive reflection grating made by ultrafast nanoimprinting of a hydrogel thin film Macromol. Rapid Commun. 43 2200150
[225] [225] Wang G, Xia H, Sun X-C, Lv C, Li S-X, Han B, Guo Q, Shi Q, Wang Y-S and Sun H-B 2018 Actuator and generator based on moisture-responsive PEDOT: PSS/PVDF composite film Sens. Actuators B 255 1415–21
[226] [226] Huang Q-L, Xu H-L, Li M-T, Hou Z-S, Lv C, Zhan X-P, Li H-L, Xia H, Wang H-Y and Sun H-B 2018 Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness J. Lightwave Technol. 36 819–24
[227] [227] Lv C et al 2018 Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing Sens. Actuators B 259 736–44
[228] [228] Li M-T, Hou Z-S, Huang Q-L, Xu S and Li A-W 2020 Laser printing controllable photonic-molecule microcavities Opt. Commun. 459 125036
[229] [229] Sun X-C, Xia H, Xu X-L, Lv C and Zhao Y 2020 Ingenious humidity-powered micro-worm with asymmetric biped from single hydrogel Sens. Actuators B 322 128620
[230] [230] de Haan L T, Verjans J M N, Broer D J, Bastiaansen C W M and Schenning A P H J 2014 Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl J. Am. Chem. Soc. 136 10585–8
[231] [231] Del Pozo M, Delaney C, Bastiaansen C W M, Diamond D, Schenning A P H J and Florea L 2020 Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist ACS Nano 14 9832–9
[232] [232] HanDD,ZhangYL,ChenZD,LiJC,MaJN,Mao JW, Zhou H and Sun H B 2023 Carnivorous plants inspired shape-morphing slippery surfaces Opto-Electron. Adv. 6 210163
[233] [233] Chen B H, Zhao Z M, Nourshargh C, He C, Salter P S, Booth M J, Elston S J and Morris S M 2022 Laser written stretchable diffractive optic elements in liquid crystal gels Crystals 12 1340
[234] [234] Song Y G et al 2022 Flexible tri-switchable wettability surface for versatile droplet manipulations ACS Appl. Mater. Interfaces 14 37248–56
[235] [235] Sun Y-L, Hou Z-S, Sun S-M, Zheng B-Y, Ku J-F, Dong W-F, Chen Q-D and Sun H-B 2015 Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness Sci. Rep. 5 12852
[236] [236] Qian J, Kolagatla S, Pacalovas A, Zhang X, Florea L, Bradley A L and Delaney C 2023 Responsive spiral photonic structures for visible vapor sensing, pattern transformation and encryption Adv. Funct. Mater. 2211735
[237] [237] ChenC,HuangZC,ZhuSW, LiuBR,LiJW, HuYL, Wu D and Chu JR 2021 In situ electric-induced switchable transparency and wettability on laser-ablated bioinspired paraffin-impregnated slippery surfaces Adv. Sci. 8 2100701
[238] [238] Münchinger A, Hahn V, Beutel D, Woska S, Monti J, Rockstuhl C, Blasco E and Wegener M 2022 Multi-photon 4D printing of complex liquid crystalline microstructures by in situ alignment using electric fields Adv. Mater. Technol. 7 2100944
[239] [239] Fleisch M, Gao S, Bosnjakovi′c D, Zhang X, Rupp R A and Drevensek-Olenik I 2019 Laser-written polymeric scaffolds for micro-patterned liquid crystal alignment Liq. Cryst. 46 2075–84
[240] [240] Gr.f S, Kunz C, Undisz A, Wonneberger R, Rettenmayr M and Müller F A 2019 Mechano-responsive colour change of laser-induced periodic surface structures Appl. Surf. Sci. 471 645–51
[241] [241] Zhang Y-L, Tian Y, Wang H, Ma Z-C, Han D-D, Niu L-G, Chen Q-D and Sun H-B 2019 Dual-3D femtosecond laser nanofabrication enables dynamic actuation ACS Nano 13 4041–8
[242] [242] Sandford O’neill J J, Salter P S, Booth M J, Elston S J and Morris S M 2020 Electrically-tunable positioning of topological defects in liquid crystals Nat. Commun. 11 2203
[243] [243] ChenC,Yao H,GuoSJ,LaoZX,XuYD,LiSYand Wu S Z 2023 Ultra-robust joule-heated superhydrophobic smart window: dually-switching droplets adhesion and transparency via in situ electric-actuated reconfigurable shape-memory shutters Adv. Funct. Mater. 33 2210495
[244] [244] Wu Y D, Dong X G, Kim J-K, Wang C X and Sitti M 2022 Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces Sci. Adv. 8 eabn3431
[245] [245] Li W et al 2023 Self-vectoring electromagnetic soft robots with high operational dimensionality Nat. Commun. 14 182
[246] [246] Kim H, Ahn S-K, Mackie D M, Kwon J, Kim S H, Choi C, Moon Y H, Lee H B and Ko S H 2020 Shape morphing smart 3D actuator materials for micro soft robot Mater. Today 41 243–69
[247] [247] Guo Y B, Shahsavan H and Sitti M 2020 3D microstructures of liquid crystal networks with programmed voxelated director fields Adv. Mater. 32 2002753
[248] [248] Zhang X, Wang Y, Tian Z H, Samri M, Moh K, Mcmeeking R M, Hensel R and Arzt E 2022 A bioinspired snap-through metastructure for manipulating micro-objects Sci. Adv. 8 eadd4768
[249] [249] Ceylan H, Dogan N O, Yasa I C, Musaoglu M N, Kulali Z U and Sitti M 2021 3D printed personalized magnetic micromachines from patient blood-derived biomaterials Sci. Adv. 7 eabh0273
[250] [250] Gantenbein S, Colucci E, K.ch J, Trachsel E, Coulter F B, Rühs P A, Masania K and Studart A R 2023 Three-dimensional printing of mycelium hydrogels into living complex materials Nat. Mater. 22 128–34
[251] [251] Afzali Naniz M, Askari M, Zolfagharian A, Afzali Naniz M and Bodaghi M 2022 4D printing: a cutting-edge platform for biomedical applications Biomed. Mater. 17 062001
[252] [252] Zheng S R et al 2022 Microrobot with gyroid surface and gold nanostar for high drug loading and near-infrared-triggered chemo-photothermal therapy Pharmaceutics 14 2393
[253] [253] van Kesteren S, Shen X T, Aldeghi M and Isa L 2023 Printing on particles: combining two-photon nanolithography and capillary assembly to fabricate multimaterial microstructures Adv. Mater. 35 2207101
[254] [254] Mohanty S, Paul A, Matos P M, Zhang J N, Sikorski J and Misra S 2022 CeFlowBot: a biomimetic flow-driven microrobot that navigates under magneto-acoustic fields Small 18 2105829
[255] [255] Lüken A, Stüwe L, Rauer S B, Oelker J, Linkhorst J and Wessling M 2022 Fabrication, flow assembly, and permeation of microscopic any-shape particles Small 18 2107508
[256] [256] Lee Y-W, Kim J-K, Bozuyuk U, Dogan N O, Khan M T A, Shiva A, Wild A-M and Sitti M 2023 Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery Adv. Mater. 35 2209812
[257] [257] Kim E, Jeon S, An H-K, Kianpour M, Yu S-W, Kim J-Y, Rah J-C and Choi H 2020 A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks Sci. Adv. 6 eabb5696
[258] [258] Abele T, Messer T, Jahnke K, Hippler M, Bastmeyer M, Wegener M and G.pfrich K 2022 Two-photon 3D laser printing inside synthetic cells Adv. Mater. 34 2106709
[259] [259] Zhang J G, Yang H, Abali B E, Li M J, Xia Y and Haag R 2019 Dynamic mechanics-modulated hydrogels to regulate the differentiation of stem-cell spheroids in soft microniches and modeling of the nonlinear behavior Small 15 1901920
[260] [260] Xi W, Saw T B, Delacour D, Lim C T and Ladoux B 2019 Material approaches to active tissue mechanics Nat. Rev. Mater. 4 23–44
[261] [261] De Belly H, Paluch E K and Chalut K J 2022 Interplay between mechanics and signalling in regulating cell fate Nat. Rev. Mol. Cell Biol. 23 465–80
[262] [262] Hippler M et al 2020 Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds Sci. Adv. 6 eabc2648
[263] [263] Xu H F, Medina-Sánchez M, Maitz M F, Werner C and Schmidt O G 2020 Sperm micromotors for cargo delivery through flowing blood ACS Nano 14 2982–93
[264] [264] Cai C K and Wang J 2022 Femtosecond laser-fabricated photonic chips for optical communications: a review Micromachines 13 630
[265] [265] Chen M-Q, He T-Y and Zhao Y 2022 Review of femtosecond laser machining technologies for optical fiber microstructures fabrication Opt. Laser Technol. 147 107628
[266] [266] Lu D-X, Zhang Y-L, Han D-D, Wang H, Xia H, Chen Q-D, Ding H and Sun H-B 2015 Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing J. Mater. Chem. C 3 1751–6
[267] [267] HuYY, MilesBT, HoYLD,Taverne MPC,ChenLF, Gersen H, Rarity J G and Faul C F J 2017 Toward direct laser writing of actively tuneable 3D photonic crystals Adv. Opt. Mater. 5 1600458
[268] [268] Ho C-H, Cheng Y-C, Maigyte L, Zeng H, Trull J, Cojocaru C, Wiersma D S and Staliunas K 2015 Controllable light diffraction in woodpile photonic crystals filled with liquid crystal Appl. Phys. Lett. 106 021113
[269] [269] Xiao D W et al 2022 Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass Sci. China Mater. 65 1586–93
[270] [270] Zhu L, Zhang Y L and Sun H B 2021 Miniaturising artificial compound eyes based on advanced micronanofabrication techniques Light Adv. Manuf. 2 7
[271] [271] Jin G-X, Hu X-Y, Ma Z-C, Li C-H, Zhang Y-L and Sun H-B 2019 Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes Nanotechnol. Precis. Eng. 2 110–7
[272] [272] Hu Z-Y, Zhang Y-L, Pan C, Dou J-Y, Li Z-Z, Tian Z-N, Mao J-W, Chen Q-D and Sun H-B 2022 Miniature optoelectronic compound eye camera Nat. Commun. 13 5634
[273] [273] Xu Q, Dai B, Jiao Z, Hong R J, Yang Z Q, Zhang D W and Zhuang S L 2018 Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view Opt. Express 26 33356–65
[274] [274] Xiong Z, Poudel A, Narkar A R, Zhang Z, Kunwar P, Henderson J H and Soman P 2022 Femtosecond laser densification of hydrogels to generate customized volume diffractive gratings ACS Appl. Mater. Interfaces 14 29377–85
[275] [275] Liu B R et al 2023 4D direct laser writing of submerged structural colors at the microscale Small 19 2204630
[276] [276] Zhang W et al 2022 Stiff shape memory polymers for high-resolution reconfigurable nanophotonics Nano Lett. 22 8917–24
[277] [277] WangY, FuXH,ChenYY, QinL,NingYQandWangLJ 2022 The development progress of surface structure diffraction gratings: from manufacturing technology to spectroscopic applications Appl. Sci. 12 6503
[278] [278] Li K X, Li C, Li H Z, Li M Z and Song Y L 2021 Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing iScience 24 102121
[279] [279] Del Pozo M, Delaney C, da Cunha M P, Debije M G, Florea L and Schenning A P H J 2022 Temperature-responsive 4D liquid crystal microactuators fabricated by direct laser writing by two-photon polymerization Small Struct. 3 2100158
[280] [280] LiWY, ZengXZ,DongYJ,FengZW, Wen HJ,ChenQ, Wen L, Song SC, LiXP and CaoYY 2021 Laser nanoprinting of floating three-dimensional plasmonic color in pH-responsive hydrogel Nanotechnology 33 065302
[281] [281] Bai X, Gou X D, Zhang J L, Liang J, Yang L J, Wang S P, Hou X and Chen F 2023 A review of smart superwetting surfaces based on shape-memory micro/nanostructures Small 19 2206463
[282] [282] Lou X D, Huang Y, Yang X, Zhu H, Heng L P and Xia F 2020 External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: fabrications and applications Adv. Funct. Mater. 30 1901130
[283] [283] Yong J L, Chen F, Yang Q, Fang Y, Huo J L and Hou X 2015 Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability Chem. Commun. 51 9813–6
[284] [284] Bai X, Yang Q, Fang Y, Zhang J Z, Yong J L, Hou X and Chen F 2020 Superhydrophobicity-memory surfaces prepared by a femtosecond laser Chem. Eng. J. 383 123143
[285] [285] KeYJ,ChenJW, LinGJ,WangSC,ZhouY,YinJ,LeePS and Long Y 2019 Smart windows: electro-, thermo-, mechano-, photochromics, and beyond Adv. Energy Mater. 9 1902066
[286] [286] Yang C, Zeng Q H, Huang J X and Guo Z G 2022 Droplet manipulation on superhydrophobic surfaces based on external stimulation: a review Adv. Colloid Interface Sci. 306 102724
[287] [287] Guo P, Wang Z B, Heng L P, Zhang Y Q, Wang X and Jiang L 2019 Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface Adv. Funct. Mater. 29 1808717
[288] [288] Wu SZ,LiDY, ZhangJ,ZhangYY, ZhangYX,LiSY, ChenC, Guo SJ, LiC Z and Lao Z X 2023 Multiple-droplet selective manipulation enabled by laser-textured hydrophobic magnetism-responsive slanted micropillar arrays with an ultrafast reconfiguration rate Langmuir 39 2589–97
[289] [289] Zhou S N, Chen C, Yang J F, Liao L R, Wang Z K, Wu D, Chu J R, Wen L and Ding W P 2022 On-demand maneuvering of diverse prodrug liquids on a light-responsive candle-soot-hybridized lubricant-infused slippery surface for highly effective toxicity screening ACS Appl. Mater. Interfaces 14 31667–76
[290] [290] JiaoYL,ZhangYY, LvXD,JiJW, WangZC,SuYH, LiuXJandLiu K 2021 In situ tuning underwater bubble movement on slippery lubricant-infused anisotropic microgrooved surface by unidirectional mechanical strain Langmuir 37 2140–5
[291] [291] Huo J L, Bai X, Yong J L, Fang Y, Yang Q, Hou X and Chen F 2021 How to adjust bubble’s adhesion on solid in aqueous media: femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation Chem. Eng. J. 414 128694
[292] [292] Liu Y-H, Zhao Y-Y, Jin F, Dong X-Z, Zheng M-L, Zhao Z-S and Duan X-M 2021 λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning Nano Lett. 21 3915–21
[293] [293] Tan DF, LiY, QiFJ,YangH,GongQH,DongXZand Duan X M 2007 Reduction in feature size of two-photon polymerization using SCR500 Appl. Phys. Lett. 90 071106
[294] [294] Stocker M P, Li L J, Gattass R R and Fourkas J T 2011 Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time Nat. Chem. 3 223–7
[295] [295] Liaros N and Fourkas J T 2019 Ten years of two-color photolithography Opt. Mater. Express 9 3006–20
[296] [296] Takada K, Sun H-B and Kawata S 2005 Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting Appl. Phys. Lett. 86 071122
[297] [297] Fischer J and Wegener M 2013 Three-dimensional optical laser lithography beyond the diffraction limit Laser Photonics Rev. 7 22–44
[298] [298] HeMF, ZhangZM,CaoC,ZhouGZ,KuangCFandLiuX 2022 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry Laser Photonics Rev. 16 2100229
[299] [299] GanZS,CaoYY, Evans RAandGuM2013 Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size Nat. Commun. 4 2061
[300] [300] Balena A, Bianco M, Pisanello F and De Vittorio M 2023 Recent advances on high-speed and holographic two-photon direct laser writing Adv. Funct. Mater. 2211773
[301] [301] Hahn V, Kiefer P, Frenzel T, Qu J Y, Blasco E, Barner-Kowollik C and Wegener M 2020 Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials Adv. Funct. Mater. 30 1907795
[302] [302] Zhu D Z et al 2022 Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography Adv. Photonics 4 066002
[303] [303] Zhang L R et al 2022 Functional shape-morphing microarchitectures fabricated by dynamic holographically shifted femtosecond multifoci Nano Lett. 22 5277–86
[304] [304] Ouyang W Q, Xu X Y, Lu W P, Zhao N, Han F and Chen S-C 2023 Ultrafast 3D nanofabrication via digital holography Nat. Commun. 14 1716
[305] [305] Saha S K, Wang D E, Nguyen V H, Chang Y N, Oakdale J S and Chen S-C 2019 Scalable submicrometer additive manufacturing Science 366 105–9
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Femtosecond laser direct writing of functional stimulus-responsive structures and applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42012
Category: Topical Review
Received: Mar. 19, 2023
Accepted: --
Published Online: Jul. 24, 2024
The Author Email: (chaoweiw@ustc.edu.cn)