International Journal of Extreme Manufacturing, Volume. 5, Issue 4, 42012(2023)

Femtosecond laser direct writing of functional stimulus-responsive structures and applications

[in Chinese]... [in Chinese], [in Chinese], [in Chinese], [in Chinese]*, [in Chinese], [in Chinese] and [in Chinese] |Show fewer author(s)
Author Affiliations
  • CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People’s Republic of China
  • show less
    References(305)

    [1] [1] Chen J, Wu J N and Yan S Z 2015 Switchable wettability of the honeybee’s tongue surface regulated by erectable glossal hairs J. Insect Sci. 15 164

    [2] [2] Teyssier J, Saenko S V, van der Marel D and Milinkovitch M C 2015 Photonic crystals cause active colour change in chameleons Nat. Commun. 6 6368

    [3] [3] Reyssat E and Mahadevan L 2009 Hygromorphs: from pine cones to biomimetic bilayers J. R. Soc. Interface 6 951–7

    [4] [4] Armon S, Efrati E, Kupferman R and Sharon E 2011 Geometry and mechanics in the opening of chiral seed pods Science 333 1726–30

    [5] [5] Elbaum R, Zaltzman L, Burgert I and Fratzl P 2007 The role of wheat awns in the seed dispersal unit Science 316 884–6

    [6] [6] Volkov A G, Foster J C, Baker K D and Markin V S 2010 Mechanical and electrical anisotropy in Mimosa pudica pulvini Plant Signal. Behav. 5 1211–21

    [7] [7] Vandenbrink J P, Brown E A, Harmer S L and Blackman B K 2014 Turning heads: the biology of solar tracking in sunflower Plant Sci. 224 20–26

    [8] [8] LiS,ZengY, HouW, Wan W, ZhangJN,WangYL,DuX and Gu Z Z 2020 Photo-responsive photonic hydrogel: in situ manipulation and monitoring of cell scaffold stiffness Mater. Horiz. 7 2944–50

    [9] [9] Gelmi A and Schutt C E 2021 Stimuli-responsive biomaterials: scaffolds for stem cell control Adv. Healthcare Mater. 10 2001125

    [10] [10] Xin C et al 2021 Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment ACS Nano 15 18048–59

    [11] [11] Zhang Q Y, He L L, Zhang X F, Tian D L and Jiang L 2020 Switchable direction of liquid transport via an anisotropic microarray surface and thermal stimuli ACS Nano 14 1436–44

    [12] [12] QuMN,MaLL,WangJX,ZhangY, ZhaoY, ZhouYC, Liu X R and He J M 2019 Multifunctional superwettable material with smart pH responsiveness for efficient and controllable oil/water separation and emulsified wastewater purification ACS Appl. Mater. Interfaces 11 24668–82

    [13] [13] Zhao Y H, Wu Y, Wang L, Zhang M M, Chen X, Liu M J, Fan J, Liu J Q, Zhou F and Wang Z K 2017 Bio-inspired reversible underwater adhesive Nat. Commun. 8 2218

    [14] [14] Xiao Y-Y, Jiang Z-C, Tong X and Zhao Y 2019 Biomimetic locomotion of electrically powered “janus” soft robots using a liquid crystal polymer Adv. Mater. 31 1903452

    [15] [15] Ze Q J, Kuang X, Wu S, Wong J, Montgomery S M, Zhang R D, KovitzJ M,Yang F Y, QiH J and Zhao R K 2020 Magnetic shape memory polymers with integrated multifunctional shape manipulation Adv. Mater. 32 1906657

    [16] [16] Xin C et al 2019 Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery Adv. Mater. 31 1808226

    [17] [17] Hines L, Petersen K, Lum G Z and Sitti M 2017 Soft actuators for small-scale robotics Adv. Mater. 29 1603483

    [18] [18] Hippler M, Blasco E, Qu J Y, Tanaka M, Barner-Kowollik C, Wegener M and Bastmeyer M 2019 Controlling the shape of 3D microstructures by temperature and light Nat. Commun. 10 232

    [19] [19] Huang T-Y, Huang H-W, Jin D D, Chen Q Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional micro-building blocks Sci. Adv. 6 eaav8219

    [20] [20] XiaYL,HeY, ZhangFH,LiuYJandLengJS2021A review of shape memory polymers and composites: mechanisms, materials, and applications Adv. Mater. 33 2000713

    [21] [21] Bai X, Yang Q, Fang Y, Yong J L, Bai Y K, Zhang J W, Hou X and Chen F 2020 Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation Chem. Eng. J. 400 125930

    [22] [22] Del Pozo M, Sol J A H P, Schenning A P H J and Debije M G 2022 4D printing of liquid crystals: what’s right for me? Adv. Mater. 34 2104390

    [23] [23] White T J and Broer D J 2015 Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers Nat. Mater. 14 1087–98

    [24] [24] RanC,WangJC,HeYG,RenQ,HuH,ZhuJQ,GuXX, Li M, Zheng L and Li J 2022 Recent advances in bioinspired hydrogels with environment-responsive characteristics for biomedical applications Macromol. Biosci. 22 2100474

    [25] [25] Downs F G, Lunn D J, Booth M J, Sauer J B, Ramsay W J, Klemperer R G, Hawker C J and Bayley H 2020 Multi-responsive hydrogel structures from patterned droplet networks Nat. Chem. 12 363–71

    [26] [26] Apsite I, Salehi S and Ionov L 2022 Materials for smart soft actuator systems Chem. Rev. 122 1349–415

    [27] [27] Li J H and Pumera M 2021 3D printing of functional microrobots Chem. Soc. Rev. 50 2794–838

    [28] [28] Wallin T J, Pikul J and Shepherd R F 2018 3D printing of soft robotic systems Nat. Rev. Mater. 3 84–100

    [29] [29] Wu D, Leng Y-M, Fan C-J, Xu Z-Y, Li L, Shi L-Y, Yang K-K and Wang Y-Z 2022 4D printing of a fully biobased shape memory copolyester via a UV-assisted FDM strategy ACS Sustain. Chem. Eng. 10 6304–12

    [30] [30] Kuang X, Roach D J, Wu J T, Hamel C M, Ding Z, Wang T J, Dunn M L and Qi H J 2019 Advances in 4D printing: materials and applications Adv. Funct. Mater. 29 1805290

    [31] [31] JiangP, ZhangYX,MuXX,LiuDS,LiuYH,GuoR, Ji Z Y, Wang X Z and Wang X L 2022 Grayscale stereolithography of gradient hydrogel with site-selective shape deformation Adv. Mater. Technol. 7 2101288

    [32] [32] Zhang Y H, Zhang F, Yan Z, Ma Q, Li X L, Huang Y G and Rogers J A 2017 Printing, folding and assembly methods for forming 3D mesostructures in advanced materials Nat. Rev. Mater. 2 17019

    [33] [33] Namvar N, Zolfagharian A, Vakili-Tahami F and Bodaghi M 2022 Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing Smart Mater. Struct. 31 055021

    [34] [34] Huang H-W, Sakar M S, Petruska A J, Pané S and Nelson B J 2016 Soft micromachines with programmable motility and morphology Nat. Commun. 7 12263

    [35] [35] Kachwal V and Tan J-C 2023 Stimuli-responsive electrospun fluorescent fibers augmented with aggregation-induced emission (AIE) for smart applications Adv. Sci. 10 2204848

    [36] [36] Wang W, Li P-F, Xie R, Ju X-J, Liu Z and Chu L-Y 2022 Designable micro-/nano-structured smart polymeric materials Adv. Mater. 34 2107877

    [37] [37] Jaiswal A, Rastogi C K, Rani S, Singh G P, Saxena S and Shukla S 2023 Two decades of two-photon lithography: materials science perspective for additive manufacturing of 2D/3D nano-microstructures iScience 26 106374

    [38] [38] Greant C, Van Durme B, Van Hoorick J and Van Vlierberghe S 2023 Multiphoton lithography as a promising tool for biomedical applications Adv. Funct. Mater. 2212641

    [39] [39] Xu Y, Yu G, Nie R Q and Wu Z G 2022 Microfluidic systems toward blood hemostasis monitoring and thrombosis diagnosis: from design principles to micro/nano fabrication technologies View 3 20200183

    [40] [40] Zhan Y, Cheng Q F, Song Y L and Li M Z 2022 Micro-nano structure functionalized perovskite optoelectronics: from structure functionalities to device applications Adv. Funct. Mater. 32 2200385

    [41] [41] Huang Z Y, Shao G B and Li L Q 2023 Micro/nano functional devices fabricated by additive manufacturing Prog. Mater. Sci. 131 101020

    [42] [42] Sugioka K and Cheng Y 2014 Ultrafast lasers—reliable tools for advanced materials processing Light Sci. Appl. 3 e149

    [43] [43] Sugioka K 2019 Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review Int. J. Extrem. Manuf. 1 012003

    [44] [44] Liu H G, Lin W X and Hong M H 2021 Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications Light Sci. Appl. 10 162

    [45] [45] ChenZJ,YangJ,LiuHB,ZhaoYXandPan R2022A short review on functionalized metallic surfaces by ultrafast laser micromachining Int. J. Adv. Manuf. Technol. 119 6919–48

    [46] [46] WangJS,FangFZ,AnHJ,Wu S,QiHM,CaiYXand Guo G Y 2023 Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales Int. J. Extrem. Manuf. 5 012005

    [47] [47] Lin Z Y and Hong M H 2021 Femtosecond laser precision engineering: from micron, submicron, to nanoscale Ultrafast Sci. 2021 9783514

    [48] [48] Wang A D, Sope.na P and Grojo D 2022 Burst mode enabled ultrafast laser inscription inside gallium arsenide Int. J. Extrem. Manuf. 4 045001

    [49] [49] Liu H, Zhang L, Huang J Y, Mao J J, Chen Z, Mao Q H, Ge M Z and Lai Y K 2022 Smart surfaces with reversibly switchable wettability: concepts, synthesis and applications Adv. Colloid Interface Sci. 300 102584

    [50] [50] Jiang S J et al 2019 Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration Adv. Mater. 31 1807507

    [51] [51] Jiang S J et al 2020 Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer Nano Lett. 20 7519–29

    [52] [52] Ma Z-C, Hu X-Y, Zhang Y-L, Liu X-Q, Hou Z-S, Niu L-G, Zhu L, Han B, Chen Q-D and Sun H-B 2019 Smart compound eyes enable tunable imaging Adv. Funct. Mater. 29 1903340

    [53] [53] HouZS,SunSM,ZhengBY, YangRZandLiAW2015 Stimuli-responsive protein-based micro/nano-waveguides RSC Adv. 5 77847–50

    [54] [54] He Z Q, Lee Y-H, Chanda D and Wu S-T 2018 Adaptive liquid crystal microlens array enabled by two-photon polymerization Opt. Express 26 21184–93

    [55] [55] Jin D D, Chen Q Y, Huang T-Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional direct laser writing of reconfigurable compound micromachines Mater. Today 32 19–25

    [56] [56] Zhang J et al 2022 Ultrafast laser-ablated bioinspired hydrogel-based porous gating system for sustained drug release ACS Appl. Mater. Interfaces 14 35366–75

    [57] [57] Pennacchio F A, Fedele C, De Martino S, Cavalli S, Vecchione R and Netti P A 2018 Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system ACS Appl. Mater. Interfaces 10 91–97

    [58] [58] Eaton S M, Cerullo G and Osellame R 2012 Fundamentals of femtosecond laser modification of bulk dielectrics Femtosecond Laser Micromachining ed R Osellame, G Cerullo and R Ramponi (Springer) pp 3–18

    [59] [59] Schaffer C B, Brodeur A and Mazur E 2001 Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses Meas. Sci. Technol. 12 1784–94

    [60] [60] Stoian R, Rosenfeld A, Ashkenasi D, Hertel I V, Bulgakova N M and Campbell E E B 2002 Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation Phys. Rev. Lett. 88 097603

    [61] [61] Nedialkov N N, Imamova S E and Atanasov P A 2004 Ablation of metals by ultrashort laser pulses J. Phys. D: Appl. Phys. 37 638–43

    [62] [62] Ashitkov S I, Komarov P S, Ovchinnikov A V, Struleva E V, Zhakhovskii V V, Inogamov N A and Agranat M B 2014 Ablation and nanostructuring of metals by femtosecond laser pulses Quantum Electron. 44 535–9

    [63] [63] Anisimov S I and Luk’yanchuk B S 2002 Selected problems of laser ablation theory Phys.-Usp. 45 293–324

    [64] [64] Yang J, Zhao Y and Zhu X 2007 Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion Appl. Phys. A 89 571–8

    [65] [65] Bulgakova N M and Bourakov I M 2002 Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt Appl. Surf. Sci. 197–198 41–44

    [66] [66] Bouilly D, Perez D and Lewis L J 2007 Damage in materials following ablation by ultrashort laser pulses: a molecular-dynamics study Phys. Rev. B 76 184119

    [67] [67] Perez D and Lewis L J 2002 Ablation of solids under femtosecond laser pulses Phys. Rev. Lett. 89 255504

    [68] [68] von der Linde D, Sokolowski-Tinten K and Bialkowski J 1997 Laser–solid interaction in the femtosecond time regime Appl. Surf. Sci. 109–110 1–10

    [69] [69] Rethfeld B, Sokolowski-Tinten K, von der Linde D and Anisimov S I 2004 Timescales in the response of materials to femtosecond laser excitation Appl. Phys. A 79 767–9

    [70] [70] Hohlfeld J, Wellershoff S-S, Güdde J, Conrad U, J.hnke V and Matthias E 2000 Electron and lattice dynamics following optical excitation of metals Chem. Phys. 251 237–58

    [71] [71] Liu X, Du D and Mourou G 1997 Laser ablation and micromachining with ultrashort laser pulses IEEE J. Quantum Electron. 33 1706–16

    [72] [72] Mannion P T, Magee J, Coyne E, O’Connor G M and Glynn T J 2004 The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air Appl. Surf. Sci. 233 275–87

    [73] [73] Anisimov S I, Kapeliovich B L and Perel’man T L 1974 Electron emission from metal surfaces exposed to ultrashort laser pulses Sov. Phys -JETP 39 375–7

    [74] [74] Jiang L and Tsai H-L 2005 Improved two-temperature model and its application in ultrashort laser heating of metal films J. Heat Transfer 127 1167–73

    [75] [75] Darkins R and Duffy D M 2018 Modelling radiation effects in solids with two-temperature molecular dynamics Comput. Mater. Sci. 147 145–53

    [76] [76] Povarnitsyn M E, Fokin V B and Levashov P R 2015 Microscopic and macroscopic modeling of femtosecond laser ablation of metals Appl. Surf. Sci. 357 1150–6

    [77] [77] Li X and Jiang L 2012 Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation Appl. Phys. A 109 367–76

    [78] [78] Ahmmed K M T, Grambow C and Kietzig A-M 2014 Fabrication of micro/nano structures on metals by femtosecond laser micromachining Micromachines 5 1219–53

    [79] [79] Sundaram S K and Mazur E 2002 Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses Nat. Mater. 1 217–24

    [80] [80] Balling P and Schou J 2013 Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films Rep. Prog. Phys. 76 036502

    [81] [81] Mihailov S J, Grobnic D, Hnatovsky C, Walker R B, Lu P, Coulas D and Ding H M 2017 Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings Sensors 17 2909

    [82] [82] Wu MT, GuoB,ZhaoQL,HeP, ZengZQandZangJ2018 The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond Opt. Laser Technol. 106 34–39

    [83] [83] Henyk M, Mitzner R, Wolfframm D and Reif J 2000 Laser-induced ion emission from dielectrics Appl. Surf. Sci. 154–155 249–55

    [84] [84] Maruo S, Nakamura O and Kawata S 1997 Three-dimensional microfabrication with two-photon-absorbed photopolymerization Opt. Lett. 22 132–4

    [85] [85] Skliutas E, Lebedevaite M, Kabouraki E, Baldacchini T, Ostrauskaite J, Vamvakaki M, Farsari M, Juodkazis S and Malinauskas M 2021 Polymerization mechanisms initiated by spatio-temporally confined light Nanophotonics 10 1211–42

    [86] [86] Gonzalez-Hernandez D, Varapnickas S, Bertoncini A, Liberale C and Malinauskas M 2023 Micro-optics 3D printed via multi-photon laser lithography Adv. Opt. Mater. 11 2201701

    [87] [87] Cumpston B H et al 1999 Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication Nature 398 51–54

    [88] [88] Bin F-C, Guo M, Li T, Zheng Y-C, Dong X-Z, Liu J, Jin F and Zheng M-L 2023 Carbazole-based anion ionic water-soluble two-photon initiator for achieving 3D hydrogel structures Adv. Funct. Mater. 2300293

    [89] [89] Harinarayana V and Shin Y C 2021 Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review Opt. Laser Technol. 142 107180

    [90] [90] Liaros N and Fourkas J T 2017 The characterization of absorptive nonlinearities Laser Photonics Rev. 11 1700106

    [91] [91] Fischer J, Mueller J B, Kaschke J, Wolf T J A, Unterreiner A N and Wegener M 2013 Three-dimensional multi-photon direct laser writing with variable repetition rate Opt. Express 21 26244–60

    [92] [92] LiuKL,DingHB,LiS,NiuYF, ZengY, ZhangJN,DuX and Gu Z Z 2022 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography Nat. Commun. 13 4563

    [93] [93] WangXD,Yu HB,LiPW, ZhangYZ,Wen YD,QiuY, Liu Z, Li Y P and Liu L Q 2021 Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review Opt. Laser Technol. 135 106687

    [94] [94] Xing J-F, Dong X-Z, Chen W-Q, Duan X-M, Takeyasu N, Tanaka T and Kawata S 2007 Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency Appl. Phys. Lett. 90 131106

    [95] [95] Ligon S C, Husár B, Wutzel H, Holman R and Liska R 2014 Strategies to reduce oxygen inhibition in photoinduced polymerization Chem. Rev. 114 557–89

    [96] [96] Yang L, Münchinger A, Kadic M, Hahn V, Mayer F, Blasco E, Barner-Kowollik C and Wegener M 2019 On the Schwarzschild effect in 3D two-photon laser lithography Adv. Opt. Mater. 7 1901040

    [97] [97] Bauer J, Guell Izard A, Zhang Y F, Baldacchini T and Valdevit L 2019 Programmable mechanical properties of two-photon polymerized materials: from nanowires to bulk Adv. Mater. Technol. 4 1900146

    [98] [98] Henning I, Woodward A W, Rance G A, Paul B T, Wildman R D, Irvine D J and Moore J C 2020 A click chemistry strategy for the synthesis of efficient photoinitiators for two-photon polymerization Adv. Funct. Mater. 30 2006108

    [99] [99] Xia H, Wang J, Tian Y, Chen Q-D, Du X-B, Zhang Y-L, He Y and Sun H-B 2010 Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization Adv. Mater. 22 3204–7

    [100] [100] Xin C et al 2022 Rapid and multimaterial 4D printing of shape-morphing micromachines for narrow micronetworks traversing Small 18 2202272

    [101] [101] Ennis A, Nicdao D, Kolagatla S, Dowling L, Tskhe Y, Thompson A J, Trimble D, Delaney C and Florea L 2023 Two-photon polymerization of sugar responsive 4D microstructures Adv. Funct. Mater. 2213947

    [102] [102] Sugioka K and Cheng Y 2014 Femtosecond laser three-dimensional micro-and nanofabrication Appl. Phys. Rev. 1 041303

    [103] [103] Kawata S, Sun H-B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8

    [104] [104] Calin B S and Paun I A 2022 A review on stimuli-actuated 3D micro/nanostructures for tissue engineering and the potential of laser-direct writing via two-photon polymerization for structure fabrication Int. J. Mol. Sci. 23 14270

    [105] [105] Jia Y X et al 2022 Covalent adaptable microstructures via combining two-photon laser printing and alkoxyamine chemistry: toward living 3D microstructures Adv. Funct. Mater. 2207826

    [106] [106] Gauci S C, Gernhardt M, Frisch H, Houck H A, Blinco J P, Blasco E, Tuten B T and Barner-Kowollik C 2022 3D printed microstructures erasable by darkness Adv. Funct. Mater. 2206303

    [107] [107] Ocier C R et al 2020 Direct laser writing of volumetric gradient index lenses and waveguides Light Sci. Appl. 9 196

    [108] [108] Aderneuer T, Fernández O and Ferrini R 2021 Two-photon grayscale lithography for free-form micro-optical arrays Opt. Express 29 39511–20

    [109] [109] Porte X, Dinc N U, Moughames J, Panusa G, Juliano C, Kadic M, Moser C, Brunner D and Psaltis D 2021 Direct (3+1)D laser writing of graded-index optical elements Optica 8 1281–7

    [110] [110] Sun Y-L, Dong W-F, Niu L-G, Jiang T, Liu D-X, Zhang L, Wang Y-S, Chen Q-D, Kim D-P and Sun H-B 2014 Protein-based soft micro-optics fabricated by femtosecond laser direct writing Light Sci. Appl. 3 e129

    [111] [111] Serbin J, Egbert A, Ostendorf A, Chichkov B, Houbertz R, Domann G, Schulz J, Cronauer C, Fr.hlich L and Popall M 2003 Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics Opt. Lett. 28 301–3

    [112] [112] Seet K K, Mizeikis V, Matsuo S, Juodkazis S and Misawa H 2005 Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing Adv. Mater. 17 541–5

    [113] [113] Tian Z-N, Yao W-G, Xu J-J, Yu Y-H, Chen Q-D and Sun H-B 2015 Focal varying microlens array Opt. Lett. 40 4222–5

    [114] [114] Dadras-Toussi O, Khorrami M, Louis Sam Titus A S C, Majd S, Mohan C and Abidian M R 2022 Multiphoton lithography of organic semiconductor devices for 3D printing of flexible electronic circuits, biosensors, and bioelectronics Adv. Mater. 34 2200512

    [115] [115] Zhang Y-L, Chen Q-D, Xia H and Sun H-B 2010 Designable 3D nanofabrication by femtosecond laser direct writing Nano Today 5 435–48

    [116] [116] Wei S X, Liu J, Zhao Y Y, Zhang T B, Zheng M L, Jin F, Dong X Z, Xing J F and Duan X M 2017 Protein-based 3D microstructures with controllable morphology and pH-responsive properties ACS Appl. Mater. Interfaces 9 42247–57

    [117] [117] Li Q, Kulikowski J, Doan D, Tertuliano O A, Zeman C J, Wang M M, Schatz G C and Gu X W 2022 Mechanical nanolattices printed using nanocluster-based photoresists Science 378 768–73

    [118] [118] Huang Z J, Tsui G C P, Deng Y and Tang C-Y 2020 Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications Nanotechnol. Rev. 9 1118–36

    [119] [119] LaoZX,XiaN,WangSJ,XuTT, Wu XYandZhangL 2021 Tethered and untethered 3D microactuators fabricated by two-photon polymerization: a review Micromachines 12 465

    [120] [120] Ren L Q, Nama N, Mcneill J M, Soto F, Yan Z F, Liu W, Wang W, Wang J and Mallouk T E 2019 3D steerable, acoustically powered microswimmers for single-particle manipulation Sci. Adv. 5 eaax3084

    [121] [121] Jeon S et al 2019 Magnetically actuated microrobots as a platform for stem cell transplantation Sci. Robot. 4 eaav4317

    [122] [122] Li G et al 2016 Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration J. Mater. Chem. A 4 18832–40

    [123] [123] Albu C, Dinescu A, Filipescu M, Ulmeanu M and Zamfirescu M 2013 Periodical structures induced by femtosecond laser on metals in air and liquid environments Appl. Surf. Sci. 278 347–51

    [124] [124] Zhang Z et al 2017 A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage Nanoscale 9 15796–803

    [125] [125] Wu D et al 2020 High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays Adv. Mater. 32 2005039

    [126] [126] JiaTQ,ChenHX,HuangM,ZhaoFL,QiuJR,LiRX, Xu Z Z, He X K, Zhang J and Kuroda H 2005 Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses Phys. Rev. B 72 125429

    [127] [127] van Driel H M, Sipe J E and Young J F 1982 Laser-induced periodic surface structure on solids: a universal phenomenon Phys. Rev. Lett. 49 1955–8

    [128] [128] Birnbaum M 1965 Semiconductor surface damage produced by ruby lasers J. Appl. Phys. 36 3688–9

    [129] [129] Wang Y, Wang Y and Zhdanov A 2019 Review of femtosecond laser induced surface periodic structure Proc. SPIE 11193 111930V

    [130] [130] Zhang D S, Liu R J and Li Z G 2022 Irregular LIPSS produced on metals by single linearly polarized femtosecond laser Int. J. Extrem. Manuf. 4 015102

    [131] [131] Volkov S N, Kaplan A E and Miyazaki K 2009 Evanescent field at nanocorrugated dielectric surface Appl. Phys. Lett. 94 041104

    [132] [132] Rudenko A, Mauclair C, Garrelie F, Stoian R and Colombier J-P 2019 Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves Nanophotonics 8 459–65

    [133] [133] Sipe J E, Young J F, Preston J S and van Driel H M 1983 Laser-induced periodic surface structure. I. Theory Phys. Rev. B 27 1141–54

    [134] [134] Bonse J, Rosenfeld A and Krüger J 2009 On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses J. Appl. Phys. 106 104910

    [135] [135] Nathala C S R, Ajami A, Ionin A A, Kudryashov S I, Makarov S V, Ganz T, Assion A and Husinsky W 2015 Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium Opt. Express 23 5915–29

    [136] [136] Wu MT, GuoB,ZhaoQL,Fan RW, DongZWandYu X 2018 The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface Opt. Laser. Eng. 105 60–67

    [137] [137] Qi L T, Nishii K and Namba Y 2009 Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel Opt. Lett. 34 1846–8

    [138] [138] LiuY, LiSY, NiuSC,CaoXW, HanZWandRenLQ 2016 Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate Appl. Surf. Sci. 379 230–7

    [139] [139] Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S, H.hm S, Rosenfeld A and Krüger J 2015 Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel Appl. Surf. Sci. 336 21–27

    [140] [140] Long J Y, Fan P X, Zhong M L, Zhang H J, Xie Y D and Lin C 2014 Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures Appl. Surf. Sci. 311 461–7

    [141] [141] Jiang H-B, Zhang Y-L, Liu Y, Fu X-Y, Li Y-F, Liu Y-Q, Li C-H and Sun H-B 2016 Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil Laser Photonics Rev. 10 441–50

    [142] [142] LiCZ et al 2021 Noncontact all-in-situ reversible reconfiguration of femtosecond laser-induced shape memory magnetic microcones for multifunctional liquid droplet manipulation and information encryption Adv. Funct. Mater. 31 2100543

    [143] [143] Wu JR,HeJ,YinK,ZhuZ,XiaoS,Wu ZPandDuanJ-A 2021 Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling Nano Lett. 21 4209–16

    [144] [144] Guo Y, Qiu P, Xu S L and Cheng G J 2022 Laser-induced microjet-assisted ablation for high-quality microfabrication Int. J. Extrem. Manuf. 4 035101

    [145] [145] Sohn I-B, Choi H-K, Noh Y-C, Kim J and Ahsan S 2019 Laser assisted fabrication of micro-lens array and characterization of their beam shaping property Appl. Surf. Sci. 479 375–85

    [146] [146] Shimotsuma Y, Hirao K, Kazansky P G and Qiu J R 2005 Three-dimensional micro-and nano-fabrication in transparent materials by femtosecond laser Jpn. J. Appl. Phys. 44 4735–48

    [147] [147] Liao C R, Li Y H, Wang D N, Sun T and Grattan K T V 2010 Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by femtosecond laser IEEE Sens. J. 10 1675–81

    [148] [148] Chen F and de Aldana J R V 2014 Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining Laser Photonics Rev. 8 251–75

    [149] [149] Zhang C, Dong N N, Yang J, Chen F, de Aldana J R V and Lu Q M 2011 Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription Opt. Express 19 12503–8

    [150] [150] Jia Y C, Dong N N, Chen F, de Aldana J R V, Akhmadaliev S and Zhou S Q 2012 Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd: YAG single crystals Opt. Mater. Express 2 657–62

    [151] [151] Ams M, Dekker P, Marshall G D and Withford M J 2012 Ultrafast laser-written dual-wavelength waveguide laser Opt. Lett. 37 993–5

    [152] [152] Della Valle G, Taccheo S, Osellame R, Festa A, Cerullo G and Laporta P 2007 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing Opt. Express 15 3190–4

    [153] [153] Wang M H, Zhao K H, Wu J Y, Li Y Q, Yang Y, Huang S, Zhao J R, Tweedle T, Carpenter D and Zheng G Q 2021 Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications Int. J. Extrem. Manuf. 3 025401

    [154] [154] Watanabe W, Asano T, Yamada K, Itoh K and Nishii J 2003 Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses Opt. Lett. 28 2491–3

    [155] [155] Butkut. A and Jonusauskas L 2021 3D manufacturing of glass microstructures using femtosecond laser Micromachines 12 499

    [156] [156] Itoh K, Watanabe W, Nolte S and Schaffer C B 2006 Ultrafast processes for bulk modification of transparent materials MRS Bull. 31 620–5

    [157] [157] Sakakura M, Lei Y H, Wang L, Yu Y-H and Kazansky P G 2020 Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass Light Sci. Appl. 9 15

    [158] [158] Sun Y-K, Zhang X-L, Yu F, Tian Z-N, Chen Q-D and Sun H-B 2022 Non-Abelian Thouless pumping in photonic waveguides Nat. Phys. 18 1080–5

    [159] [159] Wolf A, Dostovalov A, Bronnikov K and Babin S 2019 Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses Opt. Express 27 13978–90

    [160] [160] Zhang X-L, Yu F, Chen Z-G, Tian Z-N, Chen Q-D, Sun H-B and Ma G C 2022 Non-Abelian braiding on photonic chips Nat. Photon. 16 390–5

    [161] [161] Wei D Z et al 2018 Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal Nat. Photon. 12 596–600

    [162] [162] Li Y, Liu H G and Hong M H 2020 High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation Opt. Express 28 6242–50

    [163] [163] ShaoKX,JiangSJ,HuYL,ZhangYY, LiCZ, Zhang Y X, Li J W, Wu D and Chu J R 2022 Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport Adv. Funct. Mater. 32 2205831

    [164] [164] Deng C, Kim H and Ki H 2019 Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition Opt. Express 27 28679–91

    [165] [165] Liu X-Q, Bai B-F, Chen Q-D and Sun H-B 2019 Etching-assisted femtosecond laser modification of hard materials Opto Electron. Adv. 2 190021

    [166] [166] Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R, Matsuo S and Okada T 2006 Control over the crystalline state of sapphire Adv. Mater. 18 1361–4

    [167] [167] Liu X-Q, Yang S-N, Yu L, Chen Q-D, Zhang Y-L and Sun H-B 2019 Rapid engraving of artificial compound eyes from curved sapphire substrate Adv. Funct. Mater. 29 1900037

    [168] [168] Ródenas A, Gu M, Corrielli G, Paiè P, John S, Kar A K and Osellame R 2019 Three-dimensional femtosecond laser nanolithography of crystals Nat. Photon. 13 105–9

    [169] [169] LiuHG,LiY, LinWXandHongMH2020 High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation Opt. Laser Technol. 132 106472

    [170] [170] Li M J, Yang T Z, Yang Q, Fang Z, Bian H, Zhang C J, Hou X and Chen F 2022 Bioinspired anti-fogging and anti-fouling artificial compound eyes Adv. Opt. Mater. 10 2200861

    [171] [171] LiCZ et al 2022 Laser-induced morphology-switchable slanted shape memory microcones for maneuvering liquid droplets and dry adhesion Appl. Phys. Lett. 120 061603

    [172] [172] Zhang Y X et al 2022 Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation Nano Lett. 22 2923–33

    [173] [173] LiuZM,LiM,DongXG,RenZY, HuWQandSittiM 2022 Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing Nat. Commun. 13 2016

    [174] [174] Tiryaki M E and Sitti M 2022 Magnetic resonance imaging-based tracking and navigation of submillimeter-scale wireless magnetic robots Adv. Intell. Syst. 4 2100178

    [175] [175] Li R et al 2022 Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation Natl Sci. Rev. 9 nwac163

    [176] [176] Song X, Sun R J, Wang R, Zhou K, Xie R X, Lin J L, Georgiev D, Paraschiv A-A, Zhao R B and Stevens M M 2022 Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery Adv. Mater. 34 2204791

    [177] [177] TangYC,LiMT, WangTL,DongXG,HuWQand Sitti M 2022 Wireless miniature magnetic phase-change soft actuators Adv. Mater. 34 2204185

    [178] [178] Kim S, Lee S, Lee J, Nelson B J, Zhang L and Choi H 2016 Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation Sci. Rep. 6 30713

    [179] [179] Yasa I C, Tabak A F, Yasa O, Ceylan H and Sitti M 2019 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery Adv. Funct. Mater. 29 1808992

    [180] [180] Bozuyuk U, Yasa O, Yasa I C, Ceylan H, Kizilel S and Sitti M 2018 Light-triggered drug release from 3D-printed magnetic chitosan microswimmers ACS Nano 12 9617–25

    [181] [181] Sun H C M, Liao P, Wei T Y, Zhang L and Sun D 2020 Magnetically powered biodegradable microswimmers Micromachines 11 404

    [182] [182] Mhanna R, Qiu F M, Zhang L, Ding Y, Sugihara K, Zenobi-Wong M and Nelson B J 2014 Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery Small 10 1953–7

    [183] [183] Xu H F, Medina-Sánchez M and Schmidt O G 2020 Magnetic micromotors for multiple motile sperm cells capture, transport, and enzymatic release Angew. Chem., Int. Ed. 59 15029–37

    [184] [184] Alc.antara C C J, Landers F C, Kim S, De Marco C, Ahmed D, Nelson B J and Pané S 2020 Mechanically interlocked 3D multi-material micromachines Nat. Commun. 11 5957

    [185] [185] HuXH,Yasa IC,RenZY, GouduSR,CeylanH,Hu WQ and Sitti M 2021 Magnetic soft micromachines made of linked microactuator networks Sci. Adv. 7 eabe8436

    [186] [186] Hsu L-Y, Mainik P, Münchinger A, Lindenthal S, Spratte T, Welle A, Zaumseil J, Selhuber-Unkel C, Wegener M and Blasco E 2023 A facile approach for 4D microprinting of multi-photoresponsive actuators Adv. Mater. Technol. 8 2200801

    [187] [187] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H and Wiersma D 2015 Optically controlled elastic microcavities Light Sci. Appl. 4 e282

    [188] [188] Yong J L, Chen F, Yang Q, Farooq U and Hou X 2015 Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces J. Mater. Chem. A 3 10703–9

    [189] [189] Nocentini S, Martella D, Parmeggiani C, Zanotto S and Wiersma D S 2018 Structured optical materials controlled by light Adv. Opt. Mater. 6 1800167

    [190] [190] Nocentini S, Riboli F, Burresi M, Martella D, Parmeggiani C and Wiersma D S 2018 Three-dimensional photonic circuits in rigid and soft polymers tunable by light ACS Photonics 5 3222–30

    [191] [191] Chen L, Dong Y Q, Tang C-Y, Zhong L, Law W-C, Tsui G C P, Yang Y K and Xie X L 2019 Development of direct-laser-printable light-powered nanocomposites ACS Appl. Mater. Interfaces 11 19541–53

    [192] [192] Zanotto S, Sgrignuoli F, Nocentini S, Martella D, Parmeggiani C and Wiersma D S 2019 Multichannel remote polarization control enabled by nanostructured liquid crystalline networks Appl. Phys. Lett. 114 201103

    [193] [193] Nishiguchi A, Zhang H, Schweizerhof S R, Schulte M F, Mourran A and M.ller M 2020 4D printing of a light-driven soft actuator with programmed printing density ACS Appl. Mater. Interfaces 12 12176–85

    [194] [194] Jamil F, Pokharel M and Park K 2022 Light-controlled microbots in biomedical application: a review Appl. Sci. 12 11013

    [195] [195] Münchinger A, Hsu L-Y, Fürni. F, Blasco E and Wegener M 2022 3D optomechanical metamaterials Mater. Today 59 9–17

    [196] [196] Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M and Wiersma D S 2015 Light-fueled microscopic walkers Adv. Mater. 27 3883–7

    [197] [197] Martella D, Antonioli D, Nocentini S, Wiersma D S, Galli G, Laus M and Parmeggiani C 2017 Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture RSC Adv. 7 19940–7

    [198] [198] Ulrich S, Wang X P, Rottmar M, Rossi R M, Nelson B J, Bruns N, Müller R, Maniura-Weber K, Qin X-H and Boesel L F 2021 Nano-3D-printed photochromic micro-objects Small 17 2101337

    [199] [199] Zheng C L, Jin F, Zhao Y Y, Zheng M L, Liu J, Dong X Z, Xiong Z, Xia Y Z and Duan X M 2020 Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabrication Sens. Actuators B 304 127345

    [200] [200] Bai X, Yang Q, Li H Y, Huo J L, Liang J, Hou X and Chen F 2022 Sunlight recovering the superhydrophobicity of a femtosecond laser-structured shape-memory polymer Langmuir 38 4645–56

    [201] [201] DengCS,LiuYC,Fan XH,JiaoBZ,ZhangZX, Zhang M D, Chen F Y, Gao H, Deng L M and Xiong W 2023 Femtosecond laser 4D printing of light-driven intelligent micromachines Adv. Funct. Mater. 33 2211473

    [202] [202] Woska S et al 2020 Tunable photonic devices by 3D laser printing of liquid crystal elastomers Opt. Mater. Express 10 2928–43

    [203] [203] Tudor A, Delaney C, Zhang H R, Thompson A J, Curto V F, Yang G-Z, Higgins M J, Diamond D and Florea L 2018 Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s Mater. Today 21 807–16

    [204] [204] Spratte T, Geiger S, Colombo F, Mishra A, Taale M, Hsu L-Y, Blasco E and Selhuber-Unkel C 2023 Increasing the efficiency of thermoresponsive actuation at the microscale by direct laser writing of pNIPAM Adv. Mater. Technol. 8 2200714

    [205] [205] Lee Y-W, Chun S, Son D, Hu X H, Schneider M and Sitti M 2022 A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot Adv. Mater. 34 2109325

    [206] [206] JiQX et al 2021 4D Thermomechanical metamaterials for soft microrobotics Commun. Mater. 2 93

    [207] [207] McCracken J M et al 2019 Microstructured photopolymerization of liquid crystalline elastomers in oxygen-rich environments Adv. Funct. Mater. 29 1903761

    [208] [208] Zhang M C, Shahsavan H, Guo Y B, Pena-Francesch A, Zhang Y Y and Sitti M 2021 Liquid-crystal-elastomer-actuated reconfigurable microscale Kirigami metastructures Adv. Mater. 33 2008605

    [209] [209] Guo Y B, Shahsavan H and Sitti M 2020 Microscale polarization color pixels from liquid crystal elastomers Adv. Opt. Mater. 8 1902098

    [210] [210] Kubota H 1952 On hypersensitive polarization colors J. Opt. Soc. Am. 42 144–5

    [211] [211] Zhang P, de Haan L T, Debije M G and Schenning A P H J 2022 Liquid crystal-based structural color actuators Light Sci. Appl. 11 248

    [212] [212] Ye C H, Nikolov S V, Calabrese R, Dindar A, Alexeev A, Kippelen B, Kaplan D L and Tsukruk V V 2015 Self-(Un)rolling biopolymer microstructures: rings, tubules, and helical tubules from the same material Angew. Chem., Int. Ed. 54 8490–3

    [213] [213] Hu L, Wan Y, Zhang Q and Serpe M J 2020 Harnessing the power of stimuli-responsive polymers for actuation Adv. Funct. Mater. 30 1903471

    [214] [214] Sun Y-L, Dong W-F, Yang R-Z, Meng X, Zhang L, Chen Q-D and Sun H-B 2012 Dynamically tunable protein microlenses Angew. Chem., Int. Ed. 51 1558–62

    [215] [215] Ma Z-C, Zhang Y-L, Han B, Hu X-Y, Li C-H, Chen Q-D and Sun H-B 2020 Femtosecond laser programmed artificial musculoskeletal systems Nat. Commun. 11 4536

    [216] [216] Chen H M, Li Y, Liu Y, Gong T, Wang L and Zhou S B 2014 Highly pH-sensitive polyurethane exhibiting shape memory and drug release Polym. Chem. 5 5168–74

    [217] [217] Chen J-K and Chang C-J 2014 Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review Materials 7 805–75

    [218] [218] Chen Q Y, Lv P Y, Huang T-Y, Huang J Y and Duan H L 2020 Encoding smart microjoints for microcrawlers with enhanced locomotion Adv. Intell. Syst. 2 1900128

    [219] [219] LaoZX,SunR,JinDD,RenZG,XinC,ZhangYC, Jiang S J, Zhang Y Y and Zhang L 2021 Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters Int. J. Extrem. Manuf. 3 025001

    [220] [220] Wen HJ,ZengXZ,XuXX,LiWY, XieF, XiongZ, Song S C, Wang B, Li X P and Cao Y Y 2021 Reversible data encryption-decryption using a pH stimuli-responsive hydrogel J. Mater. Chem. C 9 2455–63

    [221] [221] Wang J-Y, Jin F, Dong X-Z, Liu J and Zheng M-L 2022 Flytrap inspired pH-driven 3D hydrogel actuator by femtosecond laser microfabrication Adv. Mater. Technol. 7 2200276

    [222] [222] HuYL et al 2020 Botanical-inspired 4D printing of hydrogel at the microscale Adv. Funct. Mater. 30 1907377

    [223] [223] Fratzl P and Barth F G 2009 Biomaterial systems for mechanosensing and actuation Nature 462 442–8

    [224] [224] Cesnik S, Perrotta A, Cian A, Tormen M, Bergmann A and Coclite A M 2022 Humidity responsive reflection grating made by ultrafast nanoimprinting of a hydrogel thin film Macromol. Rapid Commun. 43 2200150

    [225] [225] Wang G, Xia H, Sun X-C, Lv C, Li S-X, Han B, Guo Q, Shi Q, Wang Y-S and Sun H-B 2018 Actuator and generator based on moisture-responsive PEDOT: PSS/PVDF composite film Sens. Actuators B 255 1415–21

    [226] [226] Huang Q-L, Xu H-L, Li M-T, Hou Z-S, Lv C, Zhan X-P, Li H-L, Xia H, Wang H-Y and Sun H-B 2018 Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness J. Lightwave Technol. 36 819–24

    [227] [227] Lv C et al 2018 Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing Sens. Actuators B 259 736–44

    [228] [228] Li M-T, Hou Z-S, Huang Q-L, Xu S and Li A-W 2020 Laser printing controllable photonic-molecule microcavities Opt. Commun. 459 125036

    [229] [229] Sun X-C, Xia H, Xu X-L, Lv C and Zhao Y 2020 Ingenious humidity-powered micro-worm with asymmetric biped from single hydrogel Sens. Actuators B 322 128620

    [230] [230] de Haan L T, Verjans J M N, Broer D J, Bastiaansen C W M and Schenning A P H J 2014 Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl J. Am. Chem. Soc. 136 10585–8

    [231] [231] Del Pozo M, Delaney C, Bastiaansen C W M, Diamond D, Schenning A P H J and Florea L 2020 Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist ACS Nano 14 9832–9

    [232] [232] HanDD,ZhangYL,ChenZD,LiJC,MaJN,Mao JW, Zhou H and Sun H B 2023 Carnivorous plants inspired shape-morphing slippery surfaces Opto-Electron. Adv. 6 210163

    [233] [233] Chen B H, Zhao Z M, Nourshargh C, He C, Salter P S, Booth M J, Elston S J and Morris S M 2022 Laser written stretchable diffractive optic elements in liquid crystal gels Crystals 12 1340

    [234] [234] Song Y G et al 2022 Flexible tri-switchable wettability surface for versatile droplet manipulations ACS Appl. Mater. Interfaces 14 37248–56

    [235] [235] Sun Y-L, Hou Z-S, Sun S-M, Zheng B-Y, Ku J-F, Dong W-F, Chen Q-D and Sun H-B 2015 Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness Sci. Rep. 5 12852

    [236] [236] Qian J, Kolagatla S, Pacalovas A, Zhang X, Florea L, Bradley A L and Delaney C 2023 Responsive spiral photonic structures for visible vapor sensing, pattern transformation and encryption Adv. Funct. Mater. 2211735

    [237] [237] ChenC,HuangZC,ZhuSW, LiuBR,LiJW, HuYL, Wu D and Chu JR 2021 In situ electric-induced switchable transparency and wettability on laser-ablated bioinspired paraffin-impregnated slippery surfaces Adv. Sci. 8 2100701

    [238] [238] Münchinger A, Hahn V, Beutel D, Woska S, Monti J, Rockstuhl C, Blasco E and Wegener M 2022 Multi-photon 4D printing of complex liquid crystalline microstructures by in situ alignment using electric fields Adv. Mater. Technol. 7 2100944

    [239] [239] Fleisch M, Gao S, Bosnjakovi′c D, Zhang X, Rupp R A and Drevensek-Olenik I 2019 Laser-written polymeric scaffolds for micro-patterned liquid crystal alignment Liq. Cryst. 46 2075–84

    [240] [240] Gr.f S, Kunz C, Undisz A, Wonneberger R, Rettenmayr M and Müller F A 2019 Mechano-responsive colour change of laser-induced periodic surface structures Appl. Surf. Sci. 471 645–51

    [241] [241] Zhang Y-L, Tian Y, Wang H, Ma Z-C, Han D-D, Niu L-G, Chen Q-D and Sun H-B 2019 Dual-3D femtosecond laser nanofabrication enables dynamic actuation ACS Nano 13 4041–8

    [242] [242] Sandford O’neill J J, Salter P S, Booth M J, Elston S J and Morris S M 2020 Electrically-tunable positioning of topological defects in liquid crystals Nat. Commun. 11 2203

    [243] [243] ChenC,Yao H,GuoSJ,LaoZX,XuYD,LiSYand Wu S Z 2023 Ultra-robust joule-heated superhydrophobic smart window: dually-switching droplets adhesion and transparency via in situ electric-actuated reconfigurable shape-memory shutters Adv. Funct. Mater. 33 2210495

    [244] [244] Wu Y D, Dong X G, Kim J-K, Wang C X and Sitti M 2022 Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces Sci. Adv. 8 eabn3431

    [245] [245] Li W et al 2023 Self-vectoring electromagnetic soft robots with high operational dimensionality Nat. Commun. 14 182

    [246] [246] Kim H, Ahn S-K, Mackie D M, Kwon J, Kim S H, Choi C, Moon Y H, Lee H B and Ko S H 2020 Shape morphing smart 3D actuator materials for micro soft robot Mater. Today 41 243–69

    [247] [247] Guo Y B, Shahsavan H and Sitti M 2020 3D microstructures of liquid crystal networks with programmed voxelated director fields Adv. Mater. 32 2002753

    [248] [248] Zhang X, Wang Y, Tian Z H, Samri M, Moh K, Mcmeeking R M, Hensel R and Arzt E 2022 A bioinspired snap-through metastructure for manipulating micro-objects Sci. Adv. 8 eadd4768

    [249] [249] Ceylan H, Dogan N O, Yasa I C, Musaoglu M N, Kulali Z U and Sitti M 2021 3D printed personalized magnetic micromachines from patient blood-derived biomaterials Sci. Adv. 7 eabh0273

    [250] [250] Gantenbein S, Colucci E, K.ch J, Trachsel E, Coulter F B, Rühs P A, Masania K and Studart A R 2023 Three-dimensional printing of mycelium hydrogels into living complex materials Nat. Mater. 22 128–34

    [251] [251] Afzali Naniz M, Askari M, Zolfagharian A, Afzali Naniz M and Bodaghi M 2022 4D printing: a cutting-edge platform for biomedical applications Biomed. Mater. 17 062001

    [252] [252] Zheng S R et al 2022 Microrobot with gyroid surface and gold nanostar for high drug loading and near-infrared-triggered chemo-photothermal therapy Pharmaceutics 14 2393

    [253] [253] van Kesteren S, Shen X T, Aldeghi M and Isa L 2023 Printing on particles: combining two-photon nanolithography and capillary assembly to fabricate multimaterial microstructures Adv. Mater. 35 2207101

    [254] [254] Mohanty S, Paul A, Matos P M, Zhang J N, Sikorski J and Misra S 2022 CeFlowBot: a biomimetic flow-driven microrobot that navigates under magneto-acoustic fields Small 18 2105829

    [255] [255] Lüken A, Stüwe L, Rauer S B, Oelker J, Linkhorst J and Wessling M 2022 Fabrication, flow assembly, and permeation of microscopic any-shape particles Small 18 2107508

    [256] [256] Lee Y-W, Kim J-K, Bozuyuk U, Dogan N O, Khan M T A, Shiva A, Wild A-M and Sitti M 2023 Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery Adv. Mater. 35 2209812

    [257] [257] Kim E, Jeon S, An H-K, Kianpour M, Yu S-W, Kim J-Y, Rah J-C and Choi H 2020 A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks Sci. Adv. 6 eabb5696

    [258] [258] Abele T, Messer T, Jahnke K, Hippler M, Bastmeyer M, Wegener M and G.pfrich K 2022 Two-photon 3D laser printing inside synthetic cells Adv. Mater. 34 2106709

    [259] [259] Zhang J G, Yang H, Abali B E, Li M J, Xia Y and Haag R 2019 Dynamic mechanics-modulated hydrogels to regulate the differentiation of stem-cell spheroids in soft microniches and modeling of the nonlinear behavior Small 15 1901920

    [260] [260] Xi W, Saw T B, Delacour D, Lim C T and Ladoux B 2019 Material approaches to active tissue mechanics Nat. Rev. Mater. 4 23–44

    [261] [261] De Belly H, Paluch E K and Chalut K J 2022 Interplay between mechanics and signalling in regulating cell fate Nat. Rev. Mol. Cell Biol. 23 465–80

    [262] [262] Hippler M et al 2020 Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds Sci. Adv. 6 eabc2648

    [263] [263] Xu H F, Medina-Sánchez M, Maitz M F, Werner C and Schmidt O G 2020 Sperm micromotors for cargo delivery through flowing blood ACS Nano 14 2982–93

    [264] [264] Cai C K and Wang J 2022 Femtosecond laser-fabricated photonic chips for optical communications: a review Micromachines 13 630

    [265] [265] Chen M-Q, He T-Y and Zhao Y 2022 Review of femtosecond laser machining technologies for optical fiber microstructures fabrication Opt. Laser Technol. 147 107628

    [266] [266] Lu D-X, Zhang Y-L, Han D-D, Wang H, Xia H, Chen Q-D, Ding H and Sun H-B 2015 Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing J. Mater. Chem. C 3 1751–6

    [267] [267] HuYY, MilesBT, HoYLD,Taverne MPC,ChenLF, Gersen H, Rarity J G and Faul C F J 2017 Toward direct laser writing of actively tuneable 3D photonic crystals Adv. Opt. Mater. 5 1600458

    [268] [268] Ho C-H, Cheng Y-C, Maigyte L, Zeng H, Trull J, Cojocaru C, Wiersma D S and Staliunas K 2015 Controllable light diffraction in woodpile photonic crystals filled with liquid crystal Appl. Phys. Lett. 106 021113

    [269] [269] Xiao D W et al 2022 Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass Sci. China Mater. 65 1586–93

    [270] [270] Zhu L, Zhang Y L and Sun H B 2021 Miniaturising artificial compound eyes based on advanced micronanofabrication techniques Light Adv. Manuf. 2 7

    [271] [271] Jin G-X, Hu X-Y, Ma Z-C, Li C-H, Zhang Y-L and Sun H-B 2019 Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes Nanotechnol. Precis. Eng. 2 110–7

    [272] [272] Hu Z-Y, Zhang Y-L, Pan C, Dou J-Y, Li Z-Z, Tian Z-N, Mao J-W, Chen Q-D and Sun H-B 2022 Miniature optoelectronic compound eye camera Nat. Commun. 13 5634

    [273] [273] Xu Q, Dai B, Jiao Z, Hong R J, Yang Z Q, Zhang D W and Zhuang S L 2018 Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view Opt. Express 26 33356–65

    [274] [274] Xiong Z, Poudel A, Narkar A R, Zhang Z, Kunwar P, Henderson J H and Soman P 2022 Femtosecond laser densification of hydrogels to generate customized volume diffractive gratings ACS Appl. Mater. Interfaces 14 29377–85

    [275] [275] Liu B R et al 2023 4D direct laser writing of submerged structural colors at the microscale Small 19 2204630

    [276] [276] Zhang W et al 2022 Stiff shape memory polymers for high-resolution reconfigurable nanophotonics Nano Lett. 22 8917–24

    [277] [277] WangY, FuXH,ChenYY, QinL,NingYQandWangLJ 2022 The development progress of surface structure diffraction gratings: from manufacturing technology to spectroscopic applications Appl. Sci. 12 6503

    [278] [278] Li K X, Li C, Li H Z, Li M Z and Song Y L 2021 Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing iScience 24 102121

    [279] [279] Del Pozo M, Delaney C, da Cunha M P, Debije M G, Florea L and Schenning A P H J 2022 Temperature-responsive 4D liquid crystal microactuators fabricated by direct laser writing by two-photon polymerization Small Struct. 3 2100158

    [280] [280] LiWY, ZengXZ,DongYJ,FengZW, Wen HJ,ChenQ, Wen L, Song SC, LiXP and CaoYY 2021 Laser nanoprinting of floating three-dimensional plasmonic color in pH-responsive hydrogel Nanotechnology 33 065302

    [281] [281] Bai X, Gou X D, Zhang J L, Liang J, Yang L J, Wang S P, Hou X and Chen F 2023 A review of smart superwetting surfaces based on shape-memory micro/nanostructures Small 19 2206463

    [282] [282] Lou X D, Huang Y, Yang X, Zhu H, Heng L P and Xia F 2020 External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: fabrications and applications Adv. Funct. Mater. 30 1901130

    [283] [283] Yong J L, Chen F, Yang Q, Fang Y, Huo J L and Hou X 2015 Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability Chem. Commun. 51 9813–6

    [284] [284] Bai X, Yang Q, Fang Y, Zhang J Z, Yong J L, Hou X and Chen F 2020 Superhydrophobicity-memory surfaces prepared by a femtosecond laser Chem. Eng. J. 383 123143

    [285] [285] KeYJ,ChenJW, LinGJ,WangSC,ZhouY,YinJ,LeePS and Long Y 2019 Smart windows: electro-, thermo-, mechano-, photochromics, and beyond Adv. Energy Mater. 9 1902066

    [286] [286] Yang C, Zeng Q H, Huang J X and Guo Z G 2022 Droplet manipulation on superhydrophobic surfaces based on external stimulation: a review Adv. Colloid Interface Sci. 306 102724

    [287] [287] Guo P, Wang Z B, Heng L P, Zhang Y Q, Wang X and Jiang L 2019 Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface Adv. Funct. Mater. 29 1808717

    [288] [288] Wu SZ,LiDY, ZhangJ,ZhangYY, ZhangYX,LiSY, ChenC, Guo SJ, LiC Z and Lao Z X 2023 Multiple-droplet selective manipulation enabled by laser-textured hydrophobic magnetism-responsive slanted micropillar arrays with an ultrafast reconfiguration rate Langmuir 39 2589–97

    [289] [289] Zhou S N, Chen C, Yang J F, Liao L R, Wang Z K, Wu D, Chu J R, Wen L and Ding W P 2022 On-demand maneuvering of diverse prodrug liquids on a light-responsive candle-soot-hybridized lubricant-infused slippery surface for highly effective toxicity screening ACS Appl. Mater. Interfaces 14 31667–76

    [290] [290] JiaoYL,ZhangYY, LvXD,JiJW, WangZC,SuYH, LiuXJandLiu K 2021 In situ tuning underwater bubble movement on slippery lubricant-infused anisotropic microgrooved surface by unidirectional mechanical strain Langmuir 37 2140–5

    [291] [291] Huo J L, Bai X, Yong J L, Fang Y, Yang Q, Hou X and Chen F 2021 How to adjust bubble’s adhesion on solid in aqueous media: femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation Chem. Eng. J. 414 128694

    [292] [292] Liu Y-H, Zhao Y-Y, Jin F, Dong X-Z, Zheng M-L, Zhao Z-S and Duan X-M 2021 λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning Nano Lett. 21 3915–21

    [293] [293] Tan DF, LiY, QiFJ,YangH,GongQH,DongXZand Duan X M 2007 Reduction in feature size of two-photon polymerization using SCR500 Appl. Phys. Lett. 90 071106

    [294] [294] Stocker M P, Li L J, Gattass R R and Fourkas J T 2011 Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time Nat. Chem. 3 223–7

    [295] [295] Liaros N and Fourkas J T 2019 Ten years of two-color photolithography Opt. Mater. Express 9 3006–20

    [296] [296] Takada K, Sun H-B and Kawata S 2005 Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting Appl. Phys. Lett. 86 071122

    [297] [297] Fischer J and Wegener M 2013 Three-dimensional optical laser lithography beyond the diffraction limit Laser Photonics Rev. 7 22–44

    [298] [298] HeMF, ZhangZM,CaoC,ZhouGZ,KuangCFandLiuX 2022 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry Laser Photonics Rev. 16 2100229

    [299] [299] GanZS,CaoYY, Evans RAandGuM2013 Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size Nat. Commun. 4 2061

    [300] [300] Balena A, Bianco M, Pisanello F and De Vittorio M 2023 Recent advances on high-speed and holographic two-photon direct laser writing Adv. Funct. Mater. 2211773

    [301] [301] Hahn V, Kiefer P, Frenzel T, Qu J Y, Blasco E, Barner-Kowollik C and Wegener M 2020 Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials Adv. Funct. Mater. 30 1907795

    [302] [302] Zhu D Z et al 2022 Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography Adv. Photonics 4 066002

    [303] [303] Zhang L R et al 2022 Functional shape-morphing microarchitectures fabricated by dynamic holographically shifted femtosecond multifoci Nano Lett. 22 5277–86

    [304] [304] Ouyang W Q, Xu X Y, Lu W P, Zhao N, Han F and Chen S-C 2023 Ultrafast 3D nanofabrication via digital holography Nat. Commun. 14 1716

    [305] [305] Saha S K, Wang D E, Nguyen V H, Chang Y N, Oakdale J S and Chen S-C 2019 Scalable submicrometer additive manufacturing Science 366 105–9

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Femtosecond laser direct writing of functional stimulus-responsive structures and applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Topical Review

    Received: Mar. 19, 2023

    Accepted: --

    Published Online: Jul. 24, 2024

    The Author Email: (chaoweiw@ustc.edu.cn)

    DOI:10.1088/2631-7990/acf798

    Topics