Journal of Synthetic Crystals, Volume. 52, Issue 6, 1036(2023)
Research Progress on Superconducting Films Prepared by Pulsed Laser Deposition
[1] [1] SMITH H M, TURNER A F. Vacuum deposited thin films using a ruby laser[J]. Applied Optics, 1965, 4(1): 147-148.
[3] [3] HWANG H Y, IWASA Y, KAWASAKI M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113.
[4] [4] KANAI M, KAWAI T, KAWAI S. Atomic layer and unit cell layer growth of (Ca, Sr)CuO2 thin film by laser molecular beam epitaxy[J]. Applied Physics Letters, 1991, 58(7): 771-773.
[5] [5] DIJKKAMP D, VENKATESAN T, WU X D, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 1987, 51(8): 619-621.
[6] [6] TREECE R E, OSOFSKY M S, SKELTON E F, et al. New phase of superconducting NbN stabilized by heteroepitaxial film growth[J]. Physical Review B, 1995, 51(14): 9356-9359.
[7] [7] HEINRICH A, LEIRER C, STRITZKER B. Pulsed laser deposition of MgB2-films with high critical temperatures[J]. Superconductor Science and Technology, 2005, 18(9): 1215-1217.
[8] [8] HIRAMATSU H, KATASE T, KAMIYA T, et al. Superconductivity in epitaxial thin films of co-doped SrFe2As2 with bilayered FeAs structures and their magnetic anisotropy[J]. Applied Physics Express, 2008, 1: 101702.
[9] [9] KATASE T, HIRAMATSU H, YANAGI H, et al. Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2As2[J]. Solid State Communications, 2009, 149(47/48): 2121-2124.
[10] [10] KATASE T, HIRAMATSU H, KAMIYA T, et al. High critical current density 4 MA/cm2 in co-doped BaFe2As2Epitaxial films grown on (La, Sr)(Al, Ta)O3Substrates without buffer layers[J]. Applied Physics Express, 2010, 3(6): 063101.
[11] [11] HAN Y, LI W Y, CAO L X, et al. Preparation and superconductivity of iron selenide thin films[J]. Journal of Physics: Condensed Matter, 2009, 21(23): 235702.
[12] [12] GEETHA KUMARY T, BAISNAB D K, JANAKI J, et al. Superconducting Fe1+δSe1-xTex thin films: growth, characterization and properties[J]. Superconductor Science and Technology, 2009, 22(9): 095018.
[13] [13] BELLINGERI E, BUZIO R, GERBI A, et al. High quality epitaxial FeSe0.5Te0.5 thin films grown on SrTiO3 substrates by pulsed laser deposition[J]. Superconductor Science and Technology, 2009, 22(10): 105007.
[14] [14] BEDNORZ J G, MLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift Für Physik B Condensed Matter, 1986, 64(2): 189-193.
[15] [15] CHU C W, HOR P H, MENG R L, et al. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system[J]. Science, 1987, 235(4788): 567-569.
[17] [17] MCMILLAN W L. Transition temperature of strong-coupled superconductors[J]. Physical Review, 1968, 167(2): 331-344.
[19] [19] WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910.
[20] [20] SCHILLING A, CANTONI M, GUO J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363(6424): 56-58.
[21] [21] ZHANG Y E, LIU W H, ZHU X Y, et al. Unprecedented high irreversibility line in the nontoxic cuprate superconductor (Cu, C)Ba2Ca3Cu4O11+δ[J]. Science Advances, 2018, 4(9): eaau0192.
[22] [22] SMITH M G, MANTHIRAM A, ZHOU J, et al. Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1-yNdyCu2[J]. Nature, 1991, 351(6327): 549-551.
[23] [23] AZUMA M, HIROI Z, TAKANO M, et al. Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2[J]. Nature, 1992, 356(6372): 775-776.
[24] [24] GUPTA A. Thin film synthesis of metastable and artificially structured oxides[J]. Current Opinion in Solid State and Materials Science, 1997, 2(1): 23-31.
[25] [25] DUAN T F, HAO J H, CHU H F, et al. Preparation and superconducting properties of the (Cu, C)Ba2Ca3Cu4O11+y films with zero-resistance transition temperature of 96 K[J]. Superconductor Science and Technology, 2020, 33(2): 025009.
[26] [26] GNANASEKAR K I, SHARON M, PINTO R, et al. Pulsed laser ablation: a new route to synthesize novel superconducting compounds as oriented films[J]. Journal of Applied Physics, 1996, 79(2): 1082.
[27] [27] KAWAI T, EGAMI Y, TABATA H, et al. New cuprate superconductors[J]. Nature, 1991, 349(6306): 200.
[29] [29] NAITO M, KROCKENBERGER Y, IKEDA A, et al. Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure[J]. Physica C: Superconductivity and Its Applications, 2016, 523: 28-54.
[30] [30] SAWA A, KAWASAKI M, TAKAGI H, et al. Electron-doped superconductor La2-xCexCuO4: preparation of thin films and modified doping range for superconductivity[J]. Physical Review B, 2002, 66: 014531.
[31] [31] NAITO M, HEPP M. Superconducting T’-La2-xCexCuO4 films grown by molecular beam epitaxy[J]. Physica C: Superconductivity, 2001, 357/358/359/360: 333-336.
[32] [32] JIN K, BUTCH N P, KIRSHENBAUM K, et al. Link between spin fluctuations and electron pairing in copper oxide superconductors[J]. Nature, 2011, 476(7358): 73-75.
[33] [33] MANDAL P R, SARKAR T, HIGGINS J S, et al. Nernst effect in the electron-doped cuprate superconductor La2-xCexCuO4[J]. Physical Review B, 2018, 97: 014522.
[34] [34] MANDAL P R, SARKAR T, GREENE R L. Anomalous quantum criticality in the electron-doped cuprates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(13): 5991-5994.
[35] [35] HEPTING M, CHAIX L, HUANG E W, et al. Three-dimensional collective charge excitations in electron-doped copper oxide superconductors[J]. Nature, 2018, 563(7731): 374-378.
[36] [36] LIN J Q, YUAN J E, JIN K, et al. Doping evolution of the charge excitations and electron correlations in electron-doped superconducting La2-xCexCuO4[J]. NPJ Quantum Materials, 2020, 5: 4.
[37] [37] TAGAY Z, MAHMOOD F, LEGROS A, et al. BCS d-wave behavior in the terahertz electrodynamic response of electron-doped cuprate superconductors[J]. Physical Review B, 2021, 104(6): 064501.
[38] [38] TARAPADA S, WEI D S, ZHANG J, et al. Ferromagnetic order beyond the superconducting dome in a cuprate superconductor[J]. Science, 2020, 368(6490): 532-534.
[39] [39] RAFIQUE M, FENG Z P, LIN Z F, et al. Ionic liquid gating induced protonation of electron-doped cuprate superconductors[J]. Nano Letters, 2019, 19(11): 7775-7780.
[40] [40] YU H S, HE G, JIA Y L, et al. Anomalous in-plane magnetoresistance of electron-doped cuprate La2-xCexCuO4±δ[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(9): 097411.
[41] [41] CHERN M Y, GUPTA A, HUSSEY B W. Layer-by-layer deposition of La1.85Sr0.15CuOx films by pulsed laser ablation[J]. Applied Physics Letters, 1992, 60(24): 3045-3047.
[42] [42] TANG C, LIN Z, ZHANG J, et al. Suppression of antiferromagnetic order in the electron-doped cuprate T′-La2-xCexCuO4±δ[J]. Physical Review B, 2021, 104(15): 155125.
[43] [43] JHI S H, IHM J, LOUIE S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides[J]. Nature, 1999, 399(6732): 132-134.
[44] [44] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.
[45] [45] LJUNGCRANTZ H, ODN M, HULTMAN L, et al. Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO[J]. Journal of Applied Physics, 1996, 80(12): 6725-6733.
[46] [46] MCINTYRE D, GREENE J E, HKANSSON G, et al. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: kinetics and mechanisms[J]. Journal of Applied Physics, 1990, 67(3): 1542-1553.
[47] [47] TORGOVKIN A, CHAUDHURI S, RUHTINAS A, et al. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition[J]. Superconductor Science and Technology, 2018, 31(5): 055017.
[48] [48] JAUBERTEAU I, BESSAUDOU A, MAYET R, et al. Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties[J]. Coatings, 2015, 5(4): 656-687.
[49] [49] WANG L B, LOU Z S, BAO K Y, et al. Low-temperature solid state synthesis and characterization of superconducting vanadium nitride[J]. Chinese Physics Letters, 2017, 34(2): 028101.
[50] [50] SEO H S, LEE T Y, PETROV I, et al. Epitaxial and polycrystalline HfNx (0.8≤x≤1.5) layers on MgO(001): film growth and physical properties[J]. Journal of Applied Physics, 2005, 97(8): 083521.
[51] [51] GUO J, ZHAN G H, LIU J Q, et al. Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering[J]. Physica B: Condensed Matter, 2015, 475: 86-89.
[52] [52] LI Q, CHEN L G. Superconducting atmospheric structure and pressure-induced novel phases of cobalt mononitride[J]. Computational Materials Science, 2020, 174: 109464.
[53] [53] RICHARDSON C J K, ALEXANDER A, WEDDLE C G, et al. Low-loss superconducting titanium nitride grown using plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 2020, 127(23): 235302.
[54] [54] POSTOLOVA S V, MIRONOV A Y, BATURINA T I. Nonequilibrium transport near the superconducting transition in TiN films[J]. JETP Letters, 2015, 100(10): 635-641.
[55] [55] ENGEL A, AESCHBACHER A, INDERBITZIN K, et al. Tantalum nitride superconducting single-photon detectors with low cut-off energy[J]. Applied Physics Letters, 2012, 100(6): 062601.
[56] [56] IL’IN K, HOFHERR M, RALL D, et al. Ultra-thin TaN films for superconducting nanowire single-photon detectors[J]. Journal of Low Temperature Physics, 2012, 167(5): 809-814.
[57] [57] WANG Z, KAWAKAMI A, UZAWA Y, et al. Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature[J]. Journal of Applied Physics, 1996, 79(10): 7837-7842.
[58] [58] MOHAMMED W M, YANILKIN I V, GUMAROV A I, et al. Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates[J]. Beilstein Journal of Nanotechnology, 2020, 11: 807-813.
[59] [59] SEO H S, LEE T Y, WEN J G, et al. Growth and physical properties of epitaxial HfN layers on MgO(001)[J]. Journal of Applied Physics, 2004, 96(1): 878-884.
[60] [60] MEI A B, HOWE B M, ZHANG C, et al. Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(6): 061516.
[61] [61] GUO Y Q, PENG J, QIN W, et al. Freestanding cubic ZrN single-crystalline films with two-dimensional superconductivity[J]. Journal of the American Chemical Society, 2019, 141(26): 10183-10187.
[62] [62] LU W X, ZHAI H, LI Q A, et al. Pronounced enhancement of superconductivity in ZrN via strain engineering[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1985-1990.
[63] [63] VOLKOV S, GREGOR M, ROCH T, et al. Superconducting properties of very high quality NbN thin films grown by pulsed laser deposition[J]. Journal of Electrical Engineering, 2019, 70(7): 89-94.
[64] [64] WANG G Y, ZHU Z, YANG X Y, et al. Atomically flat superconducting NbN thin films grown on SrTiO3 (111) by plasma-assisted MBE[J]. APL Materials, 2017, 5(12): 126107.
[65] [65] KALAL S, GUPTA M, RAWAT R. N concentration effects on structure and superconductivity of NbN thin films[J]. Journal of Alloys and Compounds, 2021, 851: 155925.
[66] [66] ZOU Y T, QI X T, ZHANG C, et al. Discovery of superconductivity in hard hexagonal ε-NbN[J]. Scientific Reports, 2016, 6: 22330.
[67] [67] STERN J A, FARR W H. Fabrication and characterization of superconducting NbN nanowire single photon detectors[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 306-309.
[68] [68] CHENG R S, WRIGHT J, XING H G, et al. Epitaxial niobium nitride superconducting nanowire single-photon detectors[J]. Applied Physics Letters, 2020, 117(13): 132601.
[69] [69] KOBAYASHI A, UENO K, FUJIOKA H. Autonomous growth of NbN nanostructures on atomically flat AlN surfaces[J]. Applied Physics Letters, 2020, 117(23): 231601.
[70] [70] CHEN F C, BAI X B, WANG Y X, et al. Emergence of superconducting dome in ZrNx films via variation of nitrogen concentration[J]. Science Bulletin, 2023, 68(7): 674-678.
[71] [71] ZHANG Q, JIANG K, GU Y H, et al. Unconventional high temperature superconductivity in cubic zinc-blende transition metal compounds[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(7): 1-5.
[72] [72] HSU F C, LUO J Y, YEH K W, et al. Superconductivity in the PbO-type structure α-FeSe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14262-14264.
[73] [73] MEDVEDEV S, MCQUEEN T M, TROYAN I A, et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure[J]. Nature Materials, 2009, 8(8): 630-633.
[74] [74] MARGADONNA S, TAKABAYASHI Y, OHISHI Y, et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe(Tc=37 K)[J]. Physical Review B, 2009, 80(6): 064506.
[75] [75] LEI B, CUI J, XIANG Z, et al. Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes[J]. Physical Review Letters, 2016, 116(7): 077002.
[76] [76] SHIKAMA N, SAKISHITA Y, NABESHIMA F, et al. Positive and negative chemical pressure effects investigated in electron-doped FeSe films with an electric-double-layer structure[J]. Physical Review B, 2021, 104(9): 094512.
[77] [77] MIYATA Y, NAKAYAMA K, SUGAWARA K, et al. High-temperature superconductivity in potassium-coated multilayer FeSe thin films[J]. Nature Materials, 2015, 14(8): 775-779.
[78] [78] GUO J G, JIN S F, WANG G, et al. Superconductivity in the iron selenide KxFe2Se2(0≤x≤1.0)[J]. Physical Review B, 2010, 82(18): 180520.
[79] [79] BURRARD-LUCAS M, FREE D G, SEDLMAIER S J, et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer[J]. Nature Materials, 2013, 12(1): 15-19.
[80] [80] WANG Q Y, LI Z, ZHANG W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3[J]. Chinese Physics Letters, 2012, 29(3): 037402.
[81] [81] GE J F, LIU Z L, LIU C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3[J]. Nature Materials, 2015, 14(3): 285-289.
[82] [82] FENG Z P, YUAN J, HE G, et al. Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition[J]. Scientific Reports, 2018, 8: 4039.
[83] [83] IMAI Y, SAWADA Y, ASAMI D, et al. Superconducting properties of FeSe1-x[J]. Physica C: Superconductivity and Its Applications, 2016, 530: 24-26.
[84] [84] KOBAYASHI T, OGAWA H, NABESHIMA F, et al. Interface superconductivity in FeSe thin films on SrTiO3 grown by the PLD technique[J]. Superconductor Science and Technology, 2022, 35(7): 07LT01.
[85] [85] LEE D H. Routes to high-temperature superconductivity: a lesson from FeSe/SrTiO3[J]. Annual Review of Condensed Matter Physics, 2018, 9: 261-282.
[86] [86] HOSONO H, YAMAMOTO A, HIRAMATSU H, et al. Recent advances in iron-based superconductors toward applications[J]. Materials Today, 2018, 21(3): 278-302.
[87] [87] SI W D, HAN S J, SHI X Y, et al. High Current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla[J]. Nature Communications, 2013, 4: 1347.
[88] [88] ZHANG C, SI W D, LI Q A. Doubling the critical current density in superconducting FeSe0.5Te0.5 thin films by low temperature oxygen annealing[J]. Applied Physics Letters, 2016, 109(20): 202601.
[89] [89] OZAKI T, WU L J, ZHANG C, et al. A route for a strong increase of critical current in nanostrained iron-based superconductors[J]. Nature Communications, 2016, 7: 13036.
[90] [90] LEE S, TARANTINI C, GAO P, et al. Artificially engineered superlattices of pnictide superconductors[J]. Nature Materials, 2013, 12(5): 392-396.
[91] [91] LIN Z F, QIN M Y, LI D, et al. Enhancement of the lower critical field in FeSe-coated Nb structures for superconducting radio-frequency applications[J]. Superconductor Science and Technology, 2021, 34(1): 015001.
[92] [92] ZHANG P, YAJI K, HASHIMOTO T, et al. Observation of topological superconductivity on the surface of an iron-based superconductor[EB/OL]. 2017: arXiv: 1706.05163. https://arxiv.org/abs/1706.05163
[93] [93] FERNANDES R M, COLDEA A I, DING H, et al. Iron pnictides and chalcogenides: a newparadigm for superconductivity[J]. Nature, 2022, 601(7891): 35-44.
[94] [94] SCHOOLEY J F, HOSLER W R, COHEN M L. Superconductivity in semiconducting SrTiO3[J]. Physical Review Letters, 1964, 12(17): 474-475.
[95] [95] REED T B, BANUS M D, SJSTRAND M, et al. Superconductivity in cubic and monoclinic “TiO”'[J]. Journal of Applied Physics, 1972, 43(5): 2478-2479.
[96] [96] JOHNSTON D C, PRAKASH H, ZACHARIASEN W H, et al. High temperature superconductivity in the Li-Ti-O ternary system[J]. Materials Research Bulletin, 1973, 8(7): 777-784.
[97] [97] JOHNSTON D C. Superconducting and normal state properties of Li1+xTi2-xO4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility[J]. Journal of Low Temperature Physics, 1976, 25(1): 145-175.
[98] [98] XU F, LIAO Y C, WANG M J, et al. The preparation effect of Li1+xTi2O4 and its aging effect[J]. Journal of Low Temperature Physics, 2003, 131(3/4): 569-574.
[99] [99] HARRISON M R, EDWARDS P P, GOODENOUGH J B. The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system[J]. Philosophical Magazine B, 1985, 52(3): 679-699.
[100] [100] HEINTZ J M, DRILLON M, KUENTZLER R, et al. Superconductivity of LiTi2O4 and related systems[J]. Zeitschrift Für Physik B Condensed Matter, 1989, 76(3): 303-309.
[101] [101] INUKAI T, MURAKAMI T, INAMURA T. Preparation of superconducting LiTi2O4 thin films[J]. Thin Solid Films, 1982, 94(1): 47-50.
[102] [102] INUKAI T, MURAKAMI T. Influence of film thickness and annealing temperature on superconducting Li1+xTi2-xO4 thin films[J]. Thin Solid Films, 1985, 128(3/4): 275-282.
[103] [103] CHOPDEKAR R V, WONG F J, TAKAMURA Y, et al. Growth and characterization of superconducting spinel oxide LiTi2O4[J]. Physica C: Superconductivity, 2009, 469(21): 1885-1891.
[104] [104] KUMATANI A, OHSAWA T, SHIMIZU R, et al. Growth processes of lithium titanate thin films deposited by using pulsed laser deposition[J]. Applied Physics Letters, 2012, 101(12): 123103.
[105] [105] WEI Z X, HE G, HU W, et al. Anomalies of upper critical field in the spinel superconductor LiTi2O4-δ[J]. Physical Review B, 2019, 100(18): 184509.
[106] [106] JIN K, HE G, ZHANG X, et al. Anomalous magnetoresistance in the spinel superconductor LiTi2O4[J]. Nature Communications, 2015, 6: 7183.
[107] [107] WEI Z X, LI Q A, GONG B C, et al. Two superconductor-insulator phase transitions in the spinel oxide Li1±xTi2O4-δ induced by ionic liquid gating[J]. Physical Review B, 2021, 103(14): L140501.
[108] [108] ISOBE M, UEDA Y. Observation of phase transition from metal to spin-singlet insulator in MgTi2O4 with S=1/2 pyrochlore lattice[J]. Journal of the Physical Society of Japan, 2002, 71(8): 1848-1851.
[109] [109] ZHOU J, LI G, LUO J L, et al. Optical study of MgTi2O4: evidence for an orbital-Peierls state[J]. Physical Review B, 2006, 74(24): 245102.
[110] [110] SCHMIDT M, RATCLIFF W, RADAELLI P G, et al. Spin singlet formation in MgTi2O4: evidence of a helical dimerization pattern[J]. Physical Review Letters, 2004, 92(5): 056402.
[111] [111] KHOMSKII D I, MIZOKAWA T. Orbitally induced Peierls state in spinels[J]. Physical Review Letters, 2005, 94(15): 156402.
[112] [112] ARMITAGE N P, FOURNIER P, GREENE R L. Progress and perspectives on electron-doped cuprates[J]. Reviews of Modern Physics, 2010, 82(3): 2421-2487.
[113] [113] FERNANDES R M, CHUBUKOV A V, SCHMALIAN J. What drives nematic order in iron-based superconductors?[J]. Nature Physics, 2014, 10(2): 97-104.
[114] [114] HU W, FENG Z P, GONG B C, et al. Emergent superconductivity in single-crystalline MgTi2O4 films via structural engineering[J]. Physical Review B, 2020, 101(22): 220510.
[115] [115] ZHANG C, HAO F X, GAO G Y, et al. Enhanced superconductivity in TiO epitaxial thin films[J]. NPJ Quantum Materials, 2017, 2: 2.
[116] [116] LI Y Y, WENG Y K, ZHANG J J, et al. Observation of superconductivity in structure-selected Ti2O3 thin films[J]. NPG Asia Materials, 2018, 10(6): 522-532.
[117] [117] YOSHIMATSU K, SAKATA O, OHTOMO A. Superconductivity in Ti4O7 and γ-Ti3O5 films[J]. Scientific Reports, 2017, 7: 12544.
[118] [118] NI Z A, HU W, ZHANG Q H, et al. Epitaxial stabilization of an orthorhombic Mg-Ti-O superconductor[J]. Physical Review B, 2022, 105(21): 214511.
[119] [119] DIMOS D, CHAUDHARI P, MANNHART J, et al. Orientation dependence of grain-boundary critical currents in YBa2Cu3O7-δ bicrystals[J]. Physical Review Letters, 1988, 61(2): 219-222.
[120] [120] MACMANUS-DRISCOLL J L, WIMBUSH S C. Processing and application of high-temperature superconducting coated conductors[J]. Nature Reviews Materials, 2021, 6(7): 587-604.
[121] [121] PEURLA M, PATURI P, STEPANOV Y P, et al. Optimization of the BaZrO3 concentration in YBCO films prepared by pulsed laser deposition[J]. Superconductor Science and Technology, 2006, 19(8): 767-771.
[122] [122] CAMPBELL T A, HAUGAN T J, MAARTENSE I, et al. Flux pinning effects of Y2O3 nanoparticulate dispersions in multilayered YBCO thin films[J]. Physica C: Superconductivity, 2005, 423(1/2): 1-8.
[123] [123] CAI C B, CHI C X, LI M J, et al. Advance and challenge of secondary-generation high-temperature superconducting tapes for high field applications[J]. Chinese Science Bulletin, 2019, 64(8): 827-841.
[124] [124] LI Y J, LIU L F, HONG Z Y, et al. Progress of REBCO coated conductor program at SJTU and SSTC[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-4.
[125] [125] HAHN S, KIM K, KIM K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496-499.
[126] [126] LI C G, WANG X, WANG J A, et al. The high temperature superconducting filters and its application progress[J]. Chinese Science Bulletin, 2017, 62(34): 4010-4024.
[127] [127] SUN L, HE Y S. Research progress of high temperature superconducting filters in China[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 1-8.
[128] [128] QIN M Y, LIN Z F, WEI Z X, et al. High-throughput research on superconductivity[J]. Chinese Physics B, 2018, 27(12): 127402.
[129] [129] JIN K, WU J E, et al. Combinatorial film and high-throughput characterization methods of phase diagram for high-Tc superconductors[J]. Acta Physica Sinica, 2021, 70(1): 017403.
[130] [130] KOINUMA H, TAKEUCHI I. Combinatorial solid-state chemistry of inorganic materials[J]. Nature Materials, 2004, 3(7): 429-438.
[131] [131] YU H S, YUAN J, ZHU B Y, et al. Manipulating composition gradient in cuprate superconducting thin films[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(8): 087421.
[132] [132] YUAN J, CHEN Q H, JIANG K, et al. Scaling of the strange-metal scattering in unconventional superconductors[J]. Nature, 2022, 602(7897): 431-436.
[133] [133] KAMIHARA Y, WATANABE T, HIRANO M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K[J]. Journal of the American Chemical Society, 2008, 130(11): 3296-3297.
[134] [134] FANG M H, PHAM H M, QIAN B, et al. Superconductivity close to magnetic instability in Fe(Se1-xTex)0.82[J]. Physical Review B, 2008, 78(22): 224503.
[135] [135] IMAI Y, SAWADA Y, NABESHIMA F, et al. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1-xTex thin films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 1937-1940.
[136] [136] SEO S, KANG J H, OH M J, et al. Origin of the emergence of higher Tc than bulk in iron chalcogenide thin films[J]. Scientific Reports, 2017, 7: 9994.
[137] [137] LIN Z F, TU S J, XU J, et al. Phase diagrams on composition-spread FeyTe1-xSex films[J]. Science Bulletin, 2022, 67(14): 1443-1449.
[138] [138] HE G, WEI Z X, FENG Z P, et al. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy[J]. Review of Scientific Instruments, 2020, 91(1): 013904.
Get Citation
Copy Citation Text
LIN Zefeng, SUN Weixuan, LIU Tianxiang, TU Sijia, NI Zhuang, BAI Xinbo, ZHAO Zhanyi, ZHANG Jiquan, CHEN Fucong, HU Wei, FENG Zhongpei, YUAN Jie, JIN Kui. Research Progress on Superconducting Films Prepared by Pulsed Laser Deposition[J]. Journal of Synthetic Crystals, 2023, 52(6): 1036
Category:
Received: Mar. 20, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: LIN Zefeng (linzefeng@iphy.ac.cn)
CSTR:32186.14.