Microelectronics, Volume. 54, Issue 1, 45(2024)
Design of a Low Noise Amplifier with Adjustable Gain for 5G Terminals
[1] [1] HOSSEINI M, HADIDI K, KHOEI A. A 450 MHz 14 dB variable gain amplifier in 0.35 μm CMOS process [C] // 23rd Iranian Conference on Electrical Engineering. Tehran, Iran. 2015: 1215-1219.
[4] [4] CENTURELLI F, MONSURRO P, SCOTTI G, et al. An E-band variable gain amplifier with 24 dB-control range and 80 to 100 GHz 1 dB bandwidth in SiGe BiCMOS technology [J]. Frequenz, 2021, 75(11-12): 479-485.
[7] [7] BLATNIK A, VIDMAR M. Photovoltaic bias for depletion-mode devices in low-noise amplifier applications [J]. IEEE Microwave Magazine, 2023, 24(3): 44-51.
[8] [8] YAN X, LUO H, ZHANG J, et al. A 9-to-42-GHz high-gain low-noise amplifier using coupled interstage feedback in 0.15-μm GaAs pHEMT technology [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(4): 1476-1488.
[9] [9] HU Y, CHI T. A systematic approach to designing broadband millimeter-wave cascode common-source with inductive degeneration low noise amplifiers [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(4): 1489-1502.
[10] [10] LI J, ZENG J, YUAN Y, et al. Analysis and design of a 2-40.5 GHz low noise amplifier with multiple bandwidth expansion techniques [J]. IEEE Access, 2023, 11: 13501-13509.
[11] [11] NGUYEN D P, PHAM B L, PHAM T, et al. A 14-31 GHz 1.25 dB NF enhancement mode GaAs pHEMT low noise amplifier [C] // 2017 IEEE MTT-S International Microwave Symposium (IMS). Honololu, HI, USA. 2017: 1961-1964.
[12] [12] SEYFOLLAHI A, JIANG N, BORNEMANN J, et al. Full-wave analysis and design of a wideband GaAs pHEMT MMIC LNA [C] // IEEE 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). Waterloo, ON, Canada. 2018: 1-5.
[13] [13] ZHAO J, WANG F, YU H, et al. Analysis and design of a wideband low-noise amplifier with bias and parasitic parameters derived wide bandpass matching networks [J]. Electronics, 2022, 11(4): 633.
[14] [14] MANSOUR N, ELNOZAHI M, RAGAAI H. Parasitic-aware simulation-based optimization design tool for current steering VGAs [J]. Electronics, 2022, 12(1): 132.
[15] [15] WANG Z, HOU D, ZHOU P, et al. A Ka-band switchable LNA with 2.4-dB NF employing a varactor-based tunable network [J]. IEEE Microwave and Wireless Components Letters, 2021, 31(4): 385-388.
[16] [16] SHIMIZU H, IWASHITA Y, IWAMOTO R, et al. 6-10 GHz cryogenic GaAs pHEMT LNA MMIC [C] // 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). Hiroshima, Japan. 2020: 103-105.
[17] [17] LIU X, YANG C, YANG Z, et al. Area-efficient 28-GHz four-element phased-array transceiver front-end achieving 25.2% Tx efficiency at 15.68-dBm output power [J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(2): 654-668.
[18] [18] CHANG Y T, LU H C. A V-band low-power digital variable-gain low-noise amplifier using current-reused technique with stable matching and maintained OP1dB [J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(11): 4404-4417.
[19] [19] LI Y, MOU S. A Ku-band self-biased bidirectional amplifier in 0.25 μm PHEMT technology [C] // 2020 IEEE 6th International Conference on Computer and Communications (ICCC). Chengdu, China. 2020: 1166-1170.
[20] [20] TSAI J H, CHEN Y T. A 27-43 GHz CMOS body-biased digital current-steering VGA with 4 bit and low phase shift [J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(2): 196-199.
[21] [21] TSAI J H, CHEN Y T. A 27-43 GHz CMOS body-biased digital current-steering VGA with 4 bit and low phase shift [J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(2): 196-199.
[22] [22] SYU J S, MENG C, YANG C, et al.. 2-GHz 1.35-dB NF pHEMT single-voltage-supply process-independent low-noise amplifier [C] // 2018 IEEE Radio and Wireless Symposium (RWS). Anaheim, CA, USA. 2018: 84-87.
[23] [23] DENG Z, HAN C, LI Y, et al. A 23-40-GHz phased-array receiver using 14-bit phase-gain manager and wideband noise-canceling LNA [J]. IEEE Journal of Solid-State Circuits, 2023, 58(3): 647-661.
[25] [25] KWON K. A 40 M-1000 MHz 77.2-dB spurious free dynamic range CMOS RF variable gain amplifier for digital TV tuner ICs: a 40 M-1000 MHz 77.2-dB SFDR CMOS RF variable GAIN amplifier [J]. International Journal of Circuit Theory and Applications, 2015, 43(7): 875-886.
[26] [26] KAREEM T A, TRABELSI H. Passive mixer-based UWB receiver with low loss, high linearity and noise-cancelling for medical applications [J]. International Journal of Electronics and Telecommunications, 2023, 69(1): 61-67.
Get Citation
Copy Citation Text
PENG Huanqing, WANG Jinchan, ZHAO Peng, ZHANG Jincan, FAN Yunhang, ZHANG Liwen. Design of a Low Noise Amplifier with Adjustable Gain for 5G Terminals[J]. Microelectronics, 2024, 54(1): 45
Category:
Received: Jun. 27, 2023
Accepted: --
Published Online: Aug. 7, 2024
The Author Email: