APPLIED LASER, Volume. 44, Issue 12, 158(2024)

Ultra-Wideb and Water-Based Wave Absorber Based on Millimeter Wave Band

Shu Xiang, Chen Zihan, and Shen Zhaoyang*
Author Affiliations
  • Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang 443002, Hubei,China
  • show less
    References(23)

    [1] [1] CAI L, LIU W, ZHOU M, et al. Research on lightning impulse voltage discharge characteristics of electromagnetic metamaterials[J]. Journal of Electrostatics, 2022, 116: 103696.

    [2] [2] YANG Y F, ZHAO W B, WU Z H, et al. Three-dimensional lightweight metamaterial with ultra-wideband microwave absorption[J]. Microwave and Optical Technology Letters, 2022, 64(3): 500-506.

    [4] [4] TAN X X, CHEN J, LI J X. A thin and optically transparent infrared-radar compatible stealth structure with low emissivity and broadband absorption[J]. Journal of Physics D Applied Physics, 2022, 55(7): 075104.

    [7] [7] LAI S X, ZHOU H Q, LU L M, et al. A triple-band terahertz metamaterial absorber using two double rectangular patches connected by two identical gold strips[J]. Journal of Electronic Materials, 2022, 51(9): 5050-5057.

    [8] [8] LAI S X, XU W, YANG Z C, et al. Quad-band terahertz metamaterial absorber using three parallel gold strips surrounded by two identical gold ring arcs[J]. Physica Scripta, 2022, 97(3): 035501.

    [9] [9] ZHANG S J, LAI S X, LU L M, et al. Triple-band terahertz metamaterial absorber using the nesting structure of two pairs of splitting arcs[J]. Modern Physics Letters B, 2022, 36(14): 2250076.

    [10] [10] TIAN R, LI Y, LIU Z M, et al. Broadband NIR absorber based on square lattice arrangement in metallic and dielectric state VO2[J]. Chinese Optics Letters, 2020, 18(5): 052601.

    [11] [11] BAQIR M A. Wide-band and wide-angle, visible-and near-infrared metamaterial-based absorber made of nanoholed tungsten thin film[J]. Optical Materials Express, 2019, 9(5): 2358.

    [12] [12] ZHANG H S, WU K D. Ultra-broadband near-perfect absorber based on a single-layer Ge-assisted metasurface[J]. Journal of the Optical Society of America B, 2021, 39(1): 332.

    [13] [13] WU J, SUN Y, WU B, et al. Broadband and wide-angle solar absorber for the visible and near-infrared frequencies[J]. Solar Energy, 2022, 238: 78-83.

    [14] [14] MOHANTY A, ACHARYA O P, APPASANI B, et al. A THz metamaterial absorber with multiple polarization-insensitive, sensitive, and tunable[J]. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 2021, 19(2): 165-173.

    [15] [15] JIANG W J, CHEN T. A five-band absorber based on graphene metamaterial for terahertz ultrasensing[J]. Nanotechnology, 2022, 33(16): 165503.

    [16] [16] ELAKKIYA A, SANKARARAJAN R, SREEJA B S. Optically transparent terahertz triple-band and dual-band metamaterial absorber[J]. Circuit World, 2022, 48(1): 126-131.

    [17] [17] DENG G S, LV K, SUN H X, et al. An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability[J]. International Journal of Microwave and Wireless Technologies, 2021, 13(1): 58-66.

    [18] [18] XIONG H, LI D, ZHANG H Q. Broadband terahertz absorber based on hybrid Dirac semimetal and water[J]. Optics & Laser Technology, 2021, 143: 107274.

    [19] [19] RAJABALIPANAH H, ABDOLALI A, MOHAMMADI M. Experimental and analytical investigations on a wide-angle, polarization-insensitive, and broadband water-based metamaterial absorber[J]. Journal of Physics D Applied Physics, 2021, 54(22): 225302.

    [20] [20] SHI P F, LI X D, ZHAO H G, et al. Transmission enhancement through sub-wavelength aperture based on regulable water-based metamaterial[J]. Photonics, 2023, 10(2): 181.

    [21] [21] FENG H, LI X M, WANG M, et al. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy[J]. Optics Express, 2021, 29(4): 6000-6010.

    [23] [23] WANG D Q, WANG Y X, LI X W, et al. Realization of broadband polarization-insensitive negative refraction using water-based metamaterial[J]. Materials Research Express, 2022, 9(7): 075801.

    [24] [24] PANG Y Q, MO M M, LI Y F, et al. Dynamically controlling electromagnetic reflection using reconfigurable water-based metasurfaces[J]. Smart Material Structures, 2020, 29(11): 115018.

    [25] [25] SHEN Z Y, HUANG X J, ZHANG Q H, et al. Ultra-broadband and high-efficiency polarization conversion metamaterial based on a metal combination water structure[J]. Optics Express, 2022, 30(21): 38764.

    [27] [27] LAN F, MENG Z F, RUAN J F, et al. All-dielectric water-based metamaterial absorber in terahertz domain[J]. Optical Materials, 2021, 121: 111572.

    [28] [28] SUN X X, LI Y B, HUANG Y X, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials[J]. Advanced Functional Materials, 2022, 32(5): 2107508.

    Tools

    Get Citation

    Copy Citation Text

    Shu Xiang, Chen Zihan, Shen Zhaoyang. Ultra-Wideb and Water-Based Wave Absorber Based on Millimeter Wave Band[J]. APPLIED LASER, 2024, 44(12): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 23, 2023

    Accepted: Mar. 11, 2025

    Published Online: Mar. 11, 2025

    The Author Email: Zhaoyang Shen (shenzhaoyang@ctgu.edu.cn)

    DOI:10.14128/j.cnki.al.20244412.158

    Topics