Journal of Advanced Dielectrics, Volume. 12, Issue 6, 2241002(2022)

Domain structure and dielectric diffusion-relaxation characteristics of ternary Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics

Xudong Qi1、*, Kai Li2, Lang Bian3, Enwei Sun3, Limei Zheng4, and Rui Zhang3、**
Author Affiliations
  • 1School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China
  • 2Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, P. R. China
  • 3School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
  • 4School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
  • show less
    References(46)

    [1] E. W. Sun, W. W. Cao. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci., 65, 124(2014).

    [2] H. Xu, B. Wang, J. Qi, M. Liu, F. Teng, L. L. Hu, Y. Zhang, C. Q. Qu, M. Feng. Modulation of spin dynamics in Ni/Pb(Mg1/3Nb2/3)-O3–PbTiO3 multiferroic heterostructure. J. Adv. Ceram., 11, 515(2022).

    [3] F. Li, D. B. Lin, Z. B. Chen, Z. X. Cheng, J. L. Wang, C. C. Li, Z. Xu, Q. W. Huang, X. Z. Liao, L. Q. Chen, T. R. Shrout, S. J. Zhang. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater., 17, 349(2018).

    [4] X. J. Wang, Y. Huan, Y. X. Zhu, P. Zhang, W. L. Yang, P. Li, T. Wei, L. T. Li, X. H. Wang. Defect engineering of BCZT-based piezoelectric ceramics with high piezoelectric properties. J. Adv. Ceram., 11, 184(2022).

    [5] D. W. Wang, M. S. Cao, S. J. Zhang. Phase diagram and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc., 32, 433(2012).

    [6] D. B. Lin, Z. R. Li, F. Li, Z. Xu, X. Yao. Characterization and piezoelectric thermal stability of PIN–PMN–PT ternary ceramics near the morphotropic phase boundary. J. Alloys. Compd., 489, 115(2010).

    [7] D. B. Lin, H. H. Chen, Z. R. Li, Z. Xu. Phase diagram and dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb 2/3)O3-PbTiO3 ceramics. J. Adv. Dielectr., 5, 1550014(2015).

    [8] J. Wu, Y. F. Chang, B. Yang, S. T. Zhang, Y. Sun, F. F. Guo, W. W. Cao. Phase transitional behavior and electrical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3 )O3–PbTiO3 ternary ceramics. J. Mater. Sci. Mater. Electron., 26, 1874(2015).

    [10] Y. Hosono, Y. Yamashita, H. Sakamoto, N. Ichinose. Dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)- O3–PbTiO3 ternary ceramic materials near the morphotropic phase boundary. Jpn. J. Appl. Phys., 42, 535(2003).

    [11] X. D. Qi, Y. Zhao, E. W. Sun, J. Du, K. Li, Y. Sun, B. Yang, R. Zhang, W. W. Cao. Large electrostrictive effect and high energy storage performance of Pr3+-doped PIN-PMN-PT multifunctional ceramics in the ergodic relaxor phase. J. Eur. Ceram. Soc., 39, 4060(2019).

    [12] L. E. Cross. Relaxor ferroelectrics: An overview. Ferroelectrics, 151, 305(1994).

    [13] S. T. Misture, S. M. Pilgrim, J. C. Hicks, C. T. Blue, E. A. Payzant, C. R. Hubbard. Measurement of the electrostrictive coefficients of modified lead magnesium niobate using neutron powder diffraction. Appl. Phys. Lett., 72, 1042(1998).

    [14] F. Li, Z. Xu, S. J. Zhang. The effect of polar nanoregions on electromechanical properties of relaxor-PbTiO3 crystals: Extracting from electricfield-induced polarization and strain behaviors. Appl. Phys. Lett., 105, 122904(2014).

    [15] X. D. Qi, E. W. Sun, K. Li, S. Y. Li, R. Zhang, B. Yang, W. W. Cao. Dielectric relaxation properties of [001] c−, [011]c−, and [111] c−oriented 0.24PIN-0.47PMN-0.29PT single crystals. J. Am. Ceram. Soc., 102, 4103(2019).

    [16] D. Viehland, S. J. Jang, L. E. Cross, M. Wuttig. Deviation from Curie–Weiss behavior in relaxor ferroelectrics. Phys. Rev. B, 46, 8003(1992).

    [17] A. A. Bokov, Z. G. Ye. Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics. Solid. State. Commun., 116, 105(2000).

    [18] A. Gruverman, M. Alexe, D. Meier. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun., 10, 1661(2019).

    [19] F. Li, S. J. Zhang, D. Damjanovic, L. Q. Chen, T. R. Shrout. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater., 28, 1801504(2018).

    [20] L. Y. Yang, H. B. Huang, Z. Z. Xi, L. M. Zheng, S. Q. Xu, G. Tian, Y. Z. Zhai, F. F. Guo, L. P. Kong, Y. G. Wang, W. M. Lü, L. Yuan, M. L. Zhao, H. W. Zheng, G. Liu. Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun., 13, 2444(2022).

    [21] J. X. Guo, W. W. Chen, H. S. Chen, Y. N. Zhao, F. Dong, W. W. Liu, Y. Zhang. Recent progress in optical control of ferroelectric polarization. Adv. Opt. Mater., 9, 2002146(2021).

    [22] L. L. Wang, S. Zhao, L. Jin, F. Li, Z. Xu. Effects of InNbO4fabrication on perovskite PIN-PMN-PT. J. Am. Ceram. Soc., 97, 3110(2014).

    [23] M. Koyuncu, S. M. Pilgrim. Effects of MgO stoichiometry on the dielectric and mechanical response of Pb(Mg1/3Nb2/3)O3. J. Am. Ceram. Soc., 82, 3075(1999).

    [24] M. Pham-Thi, C. Augier, H. Dammak, P. Gaucher. Fine grains ceramics of PIN–PT, PIN–PMN–PT and PMN–PT systems: Drift of the dielectric constant under high electric field. Ultrasonics, 44, 627(2006).

    [25] R. F. Yue, W. Z. He, F. F. An, J. Yu, G. C. Chen. Preparation of PZT-based piezoceramics with transgranular fracture mode. Ceram. Int., 38, 225(2012).

    [26] S. Jiansirisomboon, K. Songsiri, A. Watcharapasorn, T. Tunkasiri. Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics. Curr. Appl. Phys., 6, 299(2006).

    [27] R. H. Kraft, J. F. Molinari. A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Materialia, 56, 4739(2008).

    [28] Z. Ren, Z. G. Ye. Effects of Mn-doping on PIN-PMN-PT ceramics with MPB composition. Ferroelectrics, 464, 130(2014).

    [29] A. A. Bokov, Y. H. Bing, W. Chen, Z. G. Ye, S. A. Bogatina, I. P. Raevski, S. I. Raevskaya, E. V. Sahkar. Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics. Phys. Rev. B, 68, 052102(2003).

    [30] G. Liu, L. P. Kong, Q. Y. Hu, S. J. Zhang. Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: High piezoelectricity with improved thermal stability. Appl. Phys. Rev., 7, 021405(2020).

    [31] G. Y. Xu, G. Shirane, J. D. Copley, P. M. Gehring. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3. Phys. Rev. B, 69, 064112(2004).

    [32] I. K. Jeong, T. W. Darling, J. K. Lee, T. Proffen, R. H. Heffner, J. S. Park, K. S. Hong, W. Dmowski, T. Egami. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett., 94, 147602(2005).

    [33] P. M. Gehring, H. Hiraka, C. Stock, S. H. Lee, W. Chen, Z. G. Ye, S. B. Vakhrushev, Z. Chowdhuri. Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb(Mg1/3Nb2/3)O3. Phys. Rev. B, 79, 224109(2009).

    [34] M. Roth, E. Mojaev, E. Dul, P. Gemeiner, B. Dkhil. Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3 )O3–xPbTiO3 relaxor ferroelectrics. Phys. Rev. Lett., 98, 265701(2007).

    [35] R. Blinc, V. Laguta, B. Zalar. Field cooled and zero field cooled 207Pb NMR and the local structure of relaxor PbMg 1/3Nb2/3O3. Phys. Rev. Lett., 91, 247601(2003).

    [36] R. Blinc, J. Dolinšek, A. Gregorovič, B. Zalar, C. Filipič, Z. Kutnjak, A. Levstik, R. Pirc. Local polarization distribution and Edwards–Anderson order parameter of relaxor ferroelectrics. Phys. Rev. Lett., 83, 424(1999).

    [37] J. Macutkevic, J. Banys, A. Bussmann-Holder, A. R. Bishop. Origin of polar nanoregions in relaxor ferroelectrics: Nonlinearity, discrete breather formation, and charge transfer. Phys. Rev. B, 83, 184301(2011).

    [38] D. Fu, H. Taniguchi, M. Itoh, S. Koshihara, N. Yamamoto, S. Mori. Relaxor Pb(Mg1/3Nb 2/3)O3: A ferroelectric with multiple inhomogeneities. Phys. Rev. Lett., 103, 207601(2009).

    [39] J. Hlinka. Do we need the ether of polar nanoregions?. J. Adv. Dielectr., 2, 1241006(2012).

    [40] D. Viehland, Y. Chen. Random-field model for ferroelectric domain dynamics and polarization reversal. J. Appl. Phys., 88, 6696(2000).

    [41] H. R. Zeng, H. F. Yu, R. Q. Chu, G. R. Li, H. S. Luo, Q. R. Yin. Spatial inhomogeneity of ferroelectric domain structure in Pb(Mg1/3Nb2/3)O 3−30%PbTiO3 single crystals. Mater. Lett., 59, 238(2005).

    [42] Y. Imry, S. K. Ma. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett., 35, 1399(1975).

    [43] R. Fisch. Random-field models for relaxor ferroelectric behavior. Phys. Rev. B, 67, 094110(2003).

    [44] D. S. Fu, H. Taniguchi, M. Itoh, S. -ya Koshihara, N. Yamamoto, S. Mori. Relaxor Pb(Mg1/3Nb 2/3)O3: A ferroelectric with multiple inhomogeneities. Phys. Rev. Lett., 103, 207601(2009).

    [45] N Setter. What is a ferroelectric–a materials designer perspective. Ferroelectrics, 500, 164(2016).

    [46] V. V. Shvartsman, A. L. Kholkin. Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3−0.1PbTiO3 single crystals. J. Appl. Phys., 101, 064108(2007).

    Tools

    Get Citation

    Copy Citation Text

    Xudong Qi, Kai Li, Lang Bian, Enwei Sun, Limei Zheng, Rui Zhang. Domain structure and dielectric diffusion-relaxation characteristics of ternary Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 8, 2022

    Accepted: Jul. 14, 2022

    Published Online: Jan. 13, 2023

    The Author Email: Xudong Qi (qixudong0316@126.com), Rui Zhang (ruizhang_ccmst@hit.edu.cn)

    DOI:10.1142/S2010135X22410028

    CSTR:32405.14.S2010135X22410028

    Topics