Photonics Research, Volume. 9, Issue 12, 2325(2021)
Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor
[1] K.-J. Boller, A. Imamoğlu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).
[2] D. J. Fulton, R. R. Moseley, S. Shepherd, B. D. Sinclair, M. H. Dunn. Effects of Zeeman splitting on electromagnetically-induced transparency. Opt. Commun., 116, 231-239(1995).
[3] S. A. Lezama, A. M. Akulshin. Electromagnetically induced absorption. Phys. Rev. A, 59, 4732-4735(1999).
[4] F. Renzoni, W. Maichen, L. Windholz, E. Arimondo. Coherent population trapping with losses observed on the Hanle effect of the d1 sodium line. Phys. Rev. A, 55, 3710-3718(1997).
[5] J. Kitching, S. Knappe, E. A. Donley. Atomic sensors–a review. IEEE Sens. J., 11, 1749-1758(2011).
[6] R. Wiesendanger. Single-atom magnetometry. Curr. Opin. Solid State Mater. Sci., 15, 1-7(2011).
[7] D. Drung, R. Cantor, M. Peters, H. Scheer, H. Koch. Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics. Appl. Phys. Lett., 57, 406-408(1990).
[8] M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr. Femtotesla magnetic field measurement with magnetoresistive sensors. Science, 304, 1648-1650(2004).
[9] I. Kominis, T. Kornack, J. Allred, M. V. Romalis. A subfemtotesla multichannel atomic magnetometer. Nature, 422, 596-599(2003).
[10] M. Fleischhauer, M. O. Scully. Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence. Phys. Rev. A, 49, 1973-1986(1994).
[11] E. Alipieva, S. Gateva, E. Taskova, S. Cartaleva. Narrow structure in the coherent population trapping resonance in rubidium. Opt. Lett., 28, 1817-1819(2003).
[12] S. Gateva, L. Petrov, E. Alipieva, G. Todorov, V. Domelunksen, V. Polischuk. Shape of the coherent-population-trapping resonances and high-rank polarization moments. Phys. Rev. A, 76, 025401(2007).
[13] V. Acosta, M. Ledbetter, S. Rochester, D. Budker, D. J. Kimball, D. Hovde, W. Gawlik, S. Pustelny, J. Zachorowski, V. Yashchuk. Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A, 73, 053404(2006).
[14] S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. D. Grujić, L. Hayen, V. Hélaine, M. Kasprzak, K. Kirch, P. Knowles, H.-C. Koch, S. Komposch, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemière, A. Mtchedlishvili, O. Naviliat-Cuncic, F. M. Piegsa, P. N. Prashanth, G. Quéméner, M. Rawlik, D. Ries, S. Roccia, D. Rozpedzik, P. Schmidt-Wellenburg, N. Severjins, A. Weis, E. Wursten, G. Wyszynski, J. Zejma, G. Zsigmond. Highly stable atomic vector magnetometer based on free spin precession. Opt. Express, 23, 22108-22115(2015).
[15] G. Bison, V. Bondar, P. Schmidt-Wellenburg, A. Schnabel, J. Voigt. Sensitive and stable vector magnetometer for operation in zero and finite fields. Opt. Express, 26, 17350-17359(2018).
[16] G. Zhang, S. Huang, F. Xu, Z. Hu, Q. Lin. Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography. Opt. Express, 27, 597-607(2019).
[17] I. Novikova, A. Matsko, V. Velichansky, M. O. Scully, G. R. Welch. Compensation of ac stark shifts in optical magnetometry. Phys. Rev. A, 63, 063802(2001).
[18] S. Pustelny, D. J. Kimball, S. Rochester, V. Yashchuk, W. Gawlik, D. Budker. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light. Phys. Rev. A, 73, 023817(2006).
[19] D. Budker, V. Yashchuk, M. Zolotorev. Nonlinear magneto-optic effects with ultranarrow widths. Phys. Rev. Lett., 81, 5788-5791(1998).
[20] D. Budker, D. Kimball, S. Rochester, V. Yashchuk, M. Zolotorev. Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys. Rev. A, 62, 043403(2000).
[21] I. Novikova, A. Matsko, V. Sautenkov, V. Velichansky, G. Welch, M. Scully. Ac-Stark shifts in the nonlinear Faraday effect. Opt. Lett., 25, 1651-1653(2000).
[22] S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, W. Gawlik. Magnetometry based on nonlinear magneto-optical rotation with amplitude-modulated light. J. Appl. Phys., 103, 063108(2008).
[23] V. Shah, S. Knappe, P. D. Schwindt, J. Kitching. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photonics, 1, 649-652(2007).
[24] D. Budker, M. Romalis. Optical magnetometry. Nat. Phys., 3, 227-234(2007).
[25] D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, R. L. Walsworth. Optical magnetic imaging of living cells. Nature, 496, 486-489(2013).
[26] H. Lee, M. Fleischhauer, M. O. Scully. Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence. Phys. Rev. A, 58, 2587-2595(1998).
[27] J. Dimitrijević, A. Krmpot, M. Mijailović, D. Arsenović, B. Panić, Z. Grujić, B. Jelenković. Role of transverse magnetic fields in electromagnetically induced absorption for elliptically polarized light. Phys. Rev. A, 77, 013814(2008).
[28] V. Yudin, A. Taichenachev, Y. Dudin, V. Velichansky, A. Zibrov, S. Zibrov. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light. Phys. Rev. A, 82, 033807(2010).
[29] K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, E. E. Mikhailov. Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor. Phys. Rev. A, 83, 015801(2011).
[30] L. Margalit, M. Rosenbluh, A. Wilson-Gordon. Degenerate two-level system in the presence of a transverse magnetic field. Phys. Rev. A, 87, 033808(2013).
[31] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).
[32] J. Wang, F. Castellucci, S. Franke-Arnold. Vectorial light–matter interaction: exploring spatially structured complex light fields. AVS Quantum Sci., 2, 031702(2020).
[33] F. K. Fatemi. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems. Opt. Express, 19, 25143-25150(2011).
[34] J. Wang, X. Yang, Y. Li, Y. Chen, M. Cao, D. Wei, H. Gao, F. Li. Optically spatial information selection with hybridly polarized beam in atomic vapor. Photon. Res., 6, 451-456(2018).
[35] X. Yang, A. Fang, J. Wang, Y. Li, X. Chen, X. Zhang, M. Cao, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Manipulating the transmission of vector beam with spatially polarized atomic ensemble. Opt. Express, 27, 3900-3908(2019).
[36] J. Wang, X. Yang, Z. Dou, S. Qiu, J. Liu, Y. Chen, M. Cao, H. Chen, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Directly extracting the authentic basis of cylindrical vector beams by a pump-probe technique in an atomic vapor. Appl. Phys. Lett., 115, 221101(2019).
[37] J. Wang, Y. Chen, X. Yang, J. Liu, S. Qiu, M. Cao, H. Chen, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Optically polarized selection in atomic vapor and its application in mapping the polarization distribution. J. Phys. Commun., 4, 015019(2020).
[38] S. Shi, D.-S. Ding, Z.-Y. Zhou, Y. Li, W. Zhang, B.-S. Shi. Magnetic-field-induced rotation of light with orbital angular momentum. Appl. Phys. Lett., 106, 261110(2015).
[39] L. Stern, A. Szapiro, E. Talker, U. Levy. Controlling the interactions of space-variant polarization beams with rubidium vapor using external magnetic fields. Opt. Express, 24, 4834-4841(2016).
[40] F. Bouchard, H. Larocque, A. M. Yao, C. Travis, I. De Leon, A. Rubano, E. Karimi, G.-L. Oppo, R. W. Boyd. Polarization shaping for control of nonlinear propagation. Phys. Rev. Lett., 117, 233903(2016).
[41] H. Hu, D. Luo, H. Chen. Nonlinear frequency conversion of vector beams with four wave mixing in atomic vapor. Appl. Phys. Lett., 115, 211101(2019).
[42] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, J. Laurat. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).
[43] Y.-H. Ye, M.-X. Dong, Y.-C. Yu, D.-S. Ding, B.-S. Shi. Experimental realization of optical storage of vector beams of light in warm atomic vapor. Opt. Lett., 44, 1528-1531(2019).
[44] N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, S. Franke-Arnold. Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett., 114, 123603(2015).
[45] X. Yang, Y. Chen, J. Wang, Z. Dou, M. Cao, D. Wei, H. Batelaan, H. Gao, F. Li. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor. Opt. Lett., 44, 2911-2914(2019).
[46] T. W. Clark. Sculpting shadows on the spatial structuring of fields & atoms: a tale of light and darkness(2016).
[47] F. Castellucci, T. W. Clark, A. Selyem, J. Wang, S. Franke-Arnold. An atomic compass–detecting 3D magnetic field alignment with vector vortex light(2021).
[48] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).
[49] L. Marrucci, C. Manzo, D. Paparo. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Appl. Phys. Lett., 88, 221102(2006).
[50] G. Milione, H. Sztul, D. Nolan, R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).
[51] M. Auzinsh, D. Budker, S. Rochester. Optically Polarized Atoms: Understanding Light-Atom Interactions(2010).
[52] Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, C. Andreeva. Coherent effects on the Zeeman sublevels of hyperfine states in optical pumping of Rb by monomode diode laser. Opt. Commun., 178, 103-110(2000).
[53] R. Meshulam, T. Zigdon, A. Wilson-Gordon, H. Friedmann. Transfer-of-coherence-enhanced stimulated emission and electromagnetically induced absorption in Zeeman split
[54] J. Anupriya, N. Ram, M. Pattabiraman. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam. Phys. Rev. A, 81, 043804(2010).
[55] W. Happer. Optical pumping. Rev. Mod. Phys., 44, 169-249(1972).
[56] A. Huss, R. Lammegger, L. Windholz, E. Alipieva, S. Gateva, L. Petrov, E. Taskova, G. Todorov. Polarization-dependent sensitivity of level-crossing, coherent-population-trapping resonances to stray magnetic fields. J. Opt. Soc. Am. B, 23, 1729-1736(2006).
[57] L. Yin, B. Luo, J. Xiong, H. Guo. Tunable rubidium excited state Voigt atomic optical filter. Opt. Express, 24, 6088-6093(2016).
[58] A. Selyem. Three-dimensional light sculptures and their interaction with atomic media: an experimentalist’s guide(2019).
[59] Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, X.-M. Jin. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).
[60] C. L. Garrido Alzar. Compact chip-scale guided cold atom gyrometers for inertial navigation: enabling technologies and design study. AVS Quantum Sci., 1, 014702(2019).
[61] L. Stern, D. G. Bopp, S. A. Schima, V. N. Maurice, J. E. Kitching. Chip-scale atomic diffractive optical elements. Nat. Commun., 10, 1(2019).
[62] J. P. Mcgilligan, K. Moore, A. Dellis, G. Martinez, E. de Clercq, P. Griffin, A. Arnold, E. Riis, R. Boudot, J. Kitching. Laser cooling in a chip-scale platform. Appl. Phys. Lett., 117, 054001(2020).
[63] B. Chen, X. Hou, F. Ge, X. Zhang, Y. Ji, H. Li, P. Qian, Y. Wang, N. Xu, J. Du. Calibration-free vector magnetometry using nitrogen-vacancy center in diamond integrated with optical vortex beam. Nano Lett., 20, 8267-8272(2020).
Get Citation
Copy Citation Text
Shuwei Qiu, Jinwen Wang, Francesco Castellucci, Mingtao Cao, Shougang Zhang, Thomas W. Clark, Sonja Franke-Arnold, Hong Gao, Fuli Li, "Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor," Photonics Res. 9, 2325 (2021)
Category: Quantum Optics
Received: Dec. 28, 2020
Accepted: Sep. 26, 2021
Published Online: Nov. 5, 2021
The Author Email: Hong Gao (honggao@xjtu.edu.cn)