Chinese Journal of Lasers, Volume. 48, Issue 4, 0401002(2021)

Research Progress of Laser Reflective Tomography Techniques

Yihua Hu1,2、**, Xinyuan Zhang1,2, Shilong Xu1,2, Nanxiang Zhao1,2, and Liang Shi2、*
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, Anhui 230037, China
  • 2AnHui Province Key Laboratory of Electronic Restriction Technology, National University of Defense Technology, Hefei, Anhui 230037, China
  • show less
    References(91)

    [1] Kalender W A, Kalender W A[M]. 计算机层析成像基本原理、系统技术、图像质量及应用, 298(2016).

         [M]. Computed tomography: fundamentals system technology image quality applications, 298(2016).

    [2] Parker J K, Craig E B, Klick D I et al. Reflective tomography: images from range-resolved laser radar measurements[J]. Applied Optics, 27, 2642-2643(1988).

    [3] Knight F K, Klick D. Ryan-Howard D P, et al. Laser radar reflective tomography utilizing a streak camera for precise range resolution[J]. Applied Optics, 28, 2196-2198(1989).

    [4] Knight F K, Klick D I. Ryan-Howard D P, et al. Two-dimensional tomographs using range measurements[J]. Proceedings of SPIE, 0999, 269-280(1989).

    [6] Knight F K, Klick D I. Ryan-Howard D P, et al. Visible laser radar: range tomography and angle-angle-range detection[J]. Optical Engineering, 30, 55-65(1991).

    [7] Knight F, Kulkarni S, Marino R et al. Tomographic techniques applied to laser radar reflective measurements[J]. The Lincoln Laboratory Journal, 2, 143-158(1989).

    [13] Zhuang T G[M]. Principle and algorithm of CT, 77-97(1992).

    [14] Kak A C, Slaney M, Wang G. Principles of computerized tomographic imaging[J]. Medical Physics, 29, 106-108(2002).

    [18] Yan Y, Jin X F, Zhou S P et al. Imaging resolution analysis using Fourier-slice theorem in reflective tomography laser radar[J]. Proceedings of SPIE, 8868, 88680V(2013).

    [27] Jin X F. Research on key technologies of imaging ladar based on CT principles[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Science, 52-53(2012).

    [31] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [33] Yang G Z, Dong B Z, Gu B Y et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 33, 209-218(1994).

    [44] Wang J C, Zhou S W, Shi L et al. Image quality analysis and improvement of ladar reflective tomography for space object recognition[J]. Optics Communications, 359, 177-183(2016).

    [47] Shi L, Wang L, Xu S L et al. Projections reconstruction in laser reflective tomography imaging through the use of basic wave pulse[J]. Proceedings of SPIE, 1142, 114270E(2020).

    [61] Zhou D L. Study on key technologies of spaceborne laser reflection tomography imaging[D]. Shanghai: University of Chinese Academy of Sciences, 60-82(2014).

    [62] Matson C L, Mosley D E. Reflective tomography reconstruction of satellite features: field results[J]. Applied Optics, 40, 2290-2296(2001).

    [64] Murray J, Triscari J, Fetzer G et al. Tomographic lidar. [C]∥Applications of Lasers for Sensing and Free Space Communications 2010, January 31-February 3, 2010,San Diego, California. Washington, D.C.: OSA, LSWA1(2010).

    [67] Li Y Q, Zhang G S. A seismic blind deconvolution algorithm based on Bayesian compressive sensing[J]. Mathematical Problems in Engineering, 2015, 1-11(2015).

    [68] Valente D, Ilow J, Cada M. Blind deconvolution using compressed sensing in time dispersive MIMO OFDM systems[C]∥2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oc, 296-301(2015).

    [69] Stoger D, Mathematik Z, Jung P et al. Blind deconvolution and compressed sensing[C]∥2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa), September 19-22, 2016. Aach, 24-27(2016).

    [71] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [72] Romberg J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 14-20(2008).

    [73] Sidky E Y, Chartrand R, Pan X C. Image reconstruction from few views by non-convex optimization[C]∥2007 IEEE Nuclear Science Symposium Conference Record, October 26-November 3, 2007, Honolulu, HI, USA., 3526-3530(2007).

    [74] Liu X H. Research on sparse reconstruction algorithm for MR images based on compressed sensing[D]. Guangzhou: Southern Medical University, 31-81(2018).

    [75] Zhang H Y. Research on magnetic resonance image reconstruction algorithms using compressed sensing theory[D]. Tianjin: Tianjin University, 13-30(2017).

    [76] Zheng S Y. Research on computer tomography image reconstruction algorithm based on compressed sensing[D]. Shenyang: Northeastern University, 33-61(2017).

    [77] Chen H. MRI reconstruction algorithms based on compressed sensing[D]. Hefei: University of Science and Technology of China, 33-60(2016).

    [79] Wu J R. Compressed sensing reconstruction of high spatio-temporal resolution abdominal dynamic magnetic resonance perfusion images with large respiratian motion[D]. Hangzhou: Zhejiang University, 19-56(2016).

    [81] Rose S D, Andersen M S, Sidky E Y et al. TV-constrained incremental algorithms for low-intensity CT image reconstruction[C]∥2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 31 - November 7, 2015, San Dieg, 1-3(2015).

    [82] Rose S D, Sidky E Y, Pan X C. TV constrained CT image reconstruction with discretized natural pixels[C]∥2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/, 1-3(2016).

    [84] Zhang Z, Ye J H, Rose S et al. Preliminary study of TV-constrained-likelihood-maximization image reconstruction from list-mode TOF-PET data[C]∥2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Sem, 1-3(2016).

    [86] Chen Z Y, Basarab A, Kouamé D. Enhanced ultrasound image reconstruction using a compressive blind deconvolution approach[C]∥2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 5-9, 2017, Ne, 6245-6249(2017).

    [88] Wang L. CT reconstruction from incomplete projections based on deep generative networks[D]. Nanjing: Nanjing University of Posts and Telecommunications, 15-59(2019).

    [89] Bai J N. 2D/3D CT reconstruction from incomplete projections by using a contextual autoencoder network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 18-52(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yihua Hu, Xinyuan Zhang, Shilong Xu, Nanxiang Zhao, Liang Shi. Research Progress of Laser Reflective Tomography Techniques[J]. Chinese Journal of Lasers, 2021, 48(4): 0401002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Sep. 2, 2020

    Accepted: Sep. 24, 2020

    Published Online: Feb. 3, 2021

    The Author Email: Hu Yihua (yh_hu@263.net), Shi Liang (shi983218@126.com)

    DOI:10.3788/CJL202148.0401002

    Topics