Acta Optica Sinica, Volume. 43, Issue 2, 0212001(2023)

Method and System for Precision Displacement Measurement with Interference of Conjugated Vortex Beams

Xiaoning Hu1, Dong Yang1, Zhongming Yang2、*, Xingang Zhuang3, and Zhaojun Liu2
Author Affiliations
  • 1Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, Shandong, China
  • 2School of Information Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
  • 3The 41st Research Institute of China Electronic Technology Group Corporation, Qingdao 266555, Shandong, China
  • show less
    References(36)

    [1] Zhou L, Wang Z H, Sun D C et al. Present situation and development of modern precision measurement technology[J]. Chinese Journal of Scientific Instrument, 38, 1869-1878(2017).

    [2] Butler H. Position control in lithographic equipment: an enabler for current-day chip manufacturing[J]. IEEE Control Systems, 31, 28-47(2011).

    [3] Wang L J, Zhang M, Zhu Y et al. Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner[J]. Optics and Precision Engineering, 27, 1909-1918(2019).

    [4] Shi L, Yin J X. Application of integral method of relative displacement measurement in vehicle NVH performance development[J]. Automobile Applied Technology, 47, 132-135(2022).

    [5] Bayer M M, Li X, Guentchev G N et al. Single-shot ranging and velocimetry with a CW lidar far beyond the coherence length of the CW laser[J]. Optics Express, 29, 42343-42354(2021).

    [6] Sheng Q M, Zheng G, Zhang X X et al. Fast signal processing method for frequency-modulated continuous-wave interferometric fiber-optic displacement sensor[J]. Laser & Optoelectronics Progress, 58, 2112003(2021).

    [7] Zheng Y, Xiao W, Zhu Z W. Research on an optical fiber linear displacement sensor based on bending loss for use over large range[J]. Acta Optica Sinica, 40, 1206002(2020).

    [8] Zhao H B, Li M W, Zhang R et al. High-precision microdisplacement sensor based on zeroth-order diffraction using a single-layer optical grating[J]. Applied Optics, 59, 16-21(2020).

    [9] Gao X, Li S H, Ma Q L et al. Development of grating-based precise displacement measurement technology[J]. Chinese Optics, 12, 741-752(2019).

    [10] Wang Y F, Xu X, Tan Y D. Laser precision ranging technology[J]. Spacecraft Recovery & Remote Sensing, 42, 22-33(2021).

    [11] Yang Q, Chen L, Guo D M et al. Laser feedback interferometer for two-dimensional dynamic displacement measurement based on frequency division multiplexing technique[J]. Acta Optica Sinica, 42, 1012003(2022).

    [12] Lou Y T, Li Z Y, Yan L P et al. A phase differential heterodyne interferometer for simultaneous measurement of straightness error and displacement[J]. Optics Communications, 497, 127195(2021).

    [13] Yang H X, Fu H J, Hu P C et al. Ultra-precision and high-speed laser interferometric displacement measurement technology and instrument[J]. Laser & Optoelectronics Progress, 59, 0922018(2022).

    [14] Chen J J, Hu H Z, Miao L J et al. Three-degree-of-freedom micro-vibration measurement system based on dual-frequency laser interference[J]. Optics and Precision Engineering, 27, 1435-1443(2019).

    [15] Naik D N, Saad N A, Rao D N et al. Ultrashort vortex from a Gaussian pulse: an achromatic-interferometric approach[J]. Scientific Reports, 7, 2395(2017).

    [16] Krenn M, Malik M, Erhard M et al. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 375, 20150442(2017).

    [17] Emile O, Emile J. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams[J]. Optics Letters, 42, 354-357(2017).

    [18] Verma G, Yadav G. Compact picometer-scale interferometer using twisted light[J]. Optics Letters, 44, 3594-3597(2019).

    [19] Lu H L, Hao Y Y, Guo C J et al. Nano-displacement measurement system using a modified orbital angular momentum interferometer[J]. IEEE Journal of Quantum Electronics, 58, 7500105(2022).

    [20] Gu D H. Research on new optical high precision measurement based on orbital angular momentum[D](2019).

    [21] Zhao D E, Wang S Y, Ma Y Y et al. Measurement of micro-displacement based on the interference of vortex beams and spherical wave[J]. Infrared and Laser Engineering, 49, 0413005(2020).

    [22] Xia H J, Gu R R, Pan C L et al. Signal processing method for displacement measurement interferometry using vortex beams[J]. Optics and Precision Engineering, 28, 1905-1912(2020).

    [23] Lavery M P J, Speirits F C, Barnett S M et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 341, 537-540(2013).

    [24] Wan Z Y, Fang L, Wang J. Direction-discriminated rotational Doppler velocimetry with circularly polarized vortex beams[J]. Optics Letters, 47, 1021-1024(2022).

    [25] Yan Y, Xie G D, Lavery M P J et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 4876(2014).

    [26] Sun X H, Li Q, Pang D X et al. New research progress of the orbital angular momentum technology in wireless communication: a survey[J]. Acta Electronica Sinica, 43, 2305-2314(2015).

    [27] Ashkin A. Optical trapping and manipulation of neutral particles using lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 94, 4853-4860(1997).

    [28] Anderegg L, Cheuk L W, Bao Y C et al. An optical tweezer array of ultracold molecules[J]. Science, 365, 1156-1158(2019).

    [29] Lü M X, Zhang Y P, He J L et al. Research progress of vortex beam laser (invited)[J]. Acta Photonica Sinica, 0151105(2022).

    [30] Yang D, Yang Z M, Zhao Z G et al. Radius of curvature of spherical wave measurement based on vortex beam interference[J]. Optics and Lasers in Engineering, 142, 106592(2021).

    [31] Yang L L, Yang D, Yang Z M et al. Co-phase state detection for segmented mirrors by dual-wavelength optical vortex phase-shifting interferometry[J]. Optics Express, 30, 14088-14102(2022).

    [32] Huang H, Ren Y X, Yan Y et al. Phase-shift interference-based wavefront characterization for orbital angular momentum modes[J]. Optics Letters, 38, 2348-2350(2013).

    [33] Wang S W, Ding L X, Zhang W S et al. Survey of differential evolution[J]. Journal of Wuhan University (Natural Science Edition), 60, 283-292(2014).

    [34] Li Q, Huang X, Shen D et al. Improved DV-hop ranging-based dynamic parameters differential evolution localization algorithm[J]. Laser & Optoelectronics Progress, 58, 0628001(2021).

    [35] Tian C, Yang Y Y, Wei T et al. Demodulation of a single-image interferogram using a Zernike-polynomial-based phase-fitting technique with a differential evolution algorithm[J]. Optics Letters, 36, 2318-2320(2011).

    [36] Bilal, Pant M, Zaheer H et al. Differential Evolution: a review of more than two decades of research[J]. Engineering Applications of Artificial Intelligence, 90, 103479(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoning Hu, Dong Yang, Zhongming Yang, Xingang Zhuang, Zhaojun Liu. Method and System for Precision Displacement Measurement with Interference of Conjugated Vortex Beams[J]. Acta Optica Sinica, 2023, 43(2): 0212001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: May. 30, 2022

    Accepted: Jul. 11, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Yang Zhongming (zhongming.yang@sdu.edu.cn)

    DOI:10.3788/AOS221218

    Topics