Acta Optica Sinica, Volume. 30, Issue 12, 3597(2010)
Study of Focal Spot of Radially Polarized Beam
[1] [1] S. Quabis, R. Dorn, M. Eberler et al.. Focusing light to a tighter spot[J]. Opt. Commun., 2000, 179(1~6): 1~7
[2] [2] B. Hao, J. Leger. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam[J]. Opt. Express, 2007, 15(6): 3550~3556
[3] [3] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam[J]. Phys. Rev. Lett., 2003, 91(23): 233901
[4] [4] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv. Opt. Photon., 2009, 1(1): 1~57
[5] [5] T. Grosjean, D. Courjon, M. Spajer. An all-fiber device for generating radially and other polarized light beams[J]. Opt. Commun., 2002, 203(1~2): 1~5
[9] [9] Q. W. Zhan. Trapping metallic Rayleigh particles with radial polarization[J]. Opt. Express, 2004, 12(15): 3377~3382
[10] [10] Y. Q. Zhao, Q. W. Zhan, Y. L. Zhang et al.. Creation of a three-dimensional optical chain for controllable particle delivery[J]. Opt. Lett., 2005, 30(8): 848~850
[12] [12] W. Chen, Q. Zhan. Optimal plasmonic focusing with radial polarization[C]. SPIE, 2007. 6450: 64500D
[14] [14] K. Sendur, W. Challener, O. Mryasov. Interaction of spherical nanoparticles with a highly focused beam of light[J]. Opt. Express, 2008, 16(5): 2874~2886
[15] [15] L. Novotny, M. R. Beversluis, K. S. Youngworth et al.. Longitudinal field modes probed by single molecules[J]. Phys. Rev. Lett., 2001, 86(23): 5251~5254
[16] [16] A. V. Failla, H. Qian, H. Qian et al.. Orientational imaging of subwavelength au particles with higher order laser modes[J]. Nano Lett., 2006, 6(7): 1374~1378
[17] [17] R. Arimoto, C. Saloma, T. Tanaka et al.. Imaging properties of axicon in a scanning optical-system[J]. Appl. Opt., 1992, 31(31): 6653~6657
[18] [18] I. Leiserson, S. G. Lipson, V. Sarafis. Superresolution in far-field imaging[J]. Opt. Lett., 2000, 25(4): 209~211
[19] [19] K. S. Youngworth, T. G. Brown. Inhomogeneous polarization in scanning optical microscopy[C]. SPIE, 2000, 3919: 75~85
[20] [20] Q. W. Zhan, J. R. Leger. Microellipsometer with radial symmetry[J]. Appl. Opt., 2002, 41(22): 4630~4637
[21] [21] M. A. Lieb, A. J. Meixner. A high numerical aperture parabolic mirror as imaging device for confocal microscopy[J]. Opt. Express, 2001, 8(7): 458~474
[22] [22] E. Wolf. Electromagnetic diffraction in optical systems. Ⅰ. An integral representation of the image field[C]. Proc. Royal Society of London, 1959, 235(1274): 349~357
[23] [23] B. Richard, E. Wolf. Electromagnetic diffraction in optical systems Ⅱ. Structure of the image field in an aplanatic system[C]. Proc. Royal Society of London, 1959, 253(1274): 358~379
[24] [24] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt. Express, 2000, 7(2): 77~87
[25] [25] Q. W. Zhan, J. R. Leger. Focus shaping using cylindrical vector beams[J]. Opt. Express, 2002, 10(7): 324~331
[26] [26] G. M. Lerman, U. Levy. Effect of radial polarization and apodization on spot size under tight focusing conditions[J]. Opt. Express, 2008, 16(7): 4567~4581
[27] [27] C. J. R. Sheppard, A. Choudhury. Annular pupils, radial polarization, and superresolution[J]. Appl. Opt., 2004, 43(22): 4322~4327
[28] [28] B. H. Jia, X. S. Gan, M. Gu. Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD[J]. Opt. Express, 2005, 13(18): 6821~6827
Get Citation
Copy Citation Text
Yan Jie, Lu Yonghua, Wang Pei, Ming Hai. Study of Focal Spot of Radially Polarized Beam[J]. Acta Optica Sinica, 2010, 30(12): 3597
Category: Physical Optics
Received: Mar. 22, 2010
Accepted: --
Published Online: Dec. 7, 2010
The Author Email: Jie Yan (yanj@mail.ustc.edu.cn)