Optical Technique, Volume. 48, Issue 2, 223(2022)
Automatic detection of dense urban buildings based on lidar scanning
[6] [6] Lin qiu, Tan Honglu, et al. Performance comparison of Fabry-Perot and Mach-Zehnder interferometers for Doppler lidar based on double-edge technique - ScienceDirect[J]. Optik,2019,181(2):71-80.
[8] [8] B L Y A, B Y S A, A B W. 3D reconstruction of building facade with fused data of terrestrial LiDAR data and optical image[J]. Optik,2016,127(4):2165-2168.
[11] [11] Balado J, Arias P, Lorenzo H, et al. Disturbance analysis in the classification of objects obtained from urban LiDAR point clouds with convolutional neural networks[J]. Remote Sensing,2021,13(11):2135-2143.
[15] [15] Chen B, Shi S, Gong W, et al. Multispectral LiDAR point cloud classification: A Two-step approach[J]. Remote Sensing,2017,9(4):373.
[16] [16] Zhang W, Montgomery D R. Digital elevation model grid size, landscape representation, and hydrologic simulations[J]. Water Resources Research,1994,30(4):1019-1028.
[17] [17] Rampasek L, Goldenberg A. TensorFlow: Biology's gateway to deep learning[J]. Cell Systems,2016,2(1):12-14.
[18] [18] Qi C R, Yi L, Su H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[J]. Computer Vision and Pattern Recognition,2017,3(2):1-7.
Get Citation
Copy Citation Text
XUE Yuanyuan. Automatic detection of dense urban buildings based on lidar scanning[J]. Optical Technique, 2022, 48(2): 223
Category:
Received: Oct. 27, 2021
Accepted: --
Published Online: Apr. 21, 2022
The Author Email: Yuanyuan XUE (mayuan_y@yeah.net)
CSTR:32186.14.