Acta Optica Sinica, Volume. 34, Issue 6, 627002(2014)

Quantum Key Distribution Protocol Based on Heralded Single Photon Source

Zhu Feng* and Wang Qin
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [1] [1] D Mayers. Unconditional security in quantum cryptography [J]. J ACM, 2001, 48(3): 351-406.

    [2] [2] P W Shor, J Preskill. Simple proof of security of the BB84 quantum key distribution protocol [J]. Phys Rev Lett, 2000, 85(2): 441-444.

    [3] [3] C H Bennett, G Brassard. Quantum cryptography: public key distribution and coin tossing [C]. Proceeding of IEEE International Conference on Computers, Systems, and Signal Processing, 1984. 175-179.

    [4] [4] B Huttner, N Imoto, N Gisin, et al.. Quantum cryptography with coherent states [J]. Phys Rev A, 1995, 51(3): 1863-1869.

    [5] [5] G Brassard, N Lutkenhaus, T Mor, et al.. Limitations on practical quantum cryptography [J]. Phys Rev Lett, 2000, 85(6): 1330-1333.

    [7] [7] B Qi, C H F Fung, H K Lo, et al.. Time-shift attack in practical quantum cryptosystems [J]. Quantum Inf Comput, 2007, 7: 073-082.

    [8] [8] Y Zhao, C H F Fung, B Qi, et al.. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems [J]. Phys Rev A, 2008,78(4):042333.

    [9] [9] V Makarov, A Anisimov, J Skaar. Effects of detector efficiency mismatch on security of quantum cryptosystems [J]. Phys Rev A, 2006, 74(2): 022313.

    [10] [10] C H F Fung, B Qi, K Tamaki, et al.. Phase-remapping attack in practical quantum-key-distribution systems [J]. Phys Rev A, 75(3): 032314.

    [11] [11] W Y Hwang. Quantum key distribution with high loss: toward global secure communication [J]. Phys Rev Lett, 2003, 91(5): 057901.

    [12] [12] X B Wang. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Phys Rev Lett, 2005, 94(23): 230503.

    [13] [13] H K Lo, X Ma, K Chen. Decoy state quantum key distribution [J]. Phys Rev Lett, 2005, 94(23): 230504.

    [14] [14] C H F Fung, K Tamaki, B Qi, et al.. Security proof of quantum key distribution with detection efficiency mismatch [J]. Quantum Inf Comput, 2009, 9: 131-165.

    [15] [15] A Acìn, N Brunner, N Gisin, et al.. Device-independent security of quantum cryptography against collective attacks [J]. Phys Rev Lett, 2007, 98(23): 230501.

    [16] [16] S Pironio, A Acin, N Brunner, et al.. Device-independent quantum key distribution secure against collective attacks [J]. New J Phys, 2009, 11(4): 045021.

    [17] [17] H K Lo, M Curty, B Qi. Measurement-device-independent quantum key distribution [J]. Phys Rev Lett, 2012, 108(13): 130503.

    [18] [18] S L Braunstein, S Pirandola. Side-channel-free quantum key distribution [J]. Phys Rev Lett, 2012, 108(13): 130502.

    [19] [19] B Yurke, M Potasek. Obtainment of thermal noise from a pure quantum state [J]. Phys Rev A, 1987, 36(7): 3464-3466.

    [20] [20] N Lutkenhaus. Security against individual attacks for realistic quantum key distribution [J]. Phys Rev A, 2000, 61(5): 052304.

    [21] [21] D Gottesman, H K Lo, N Lutkenhaus, et al.. Security of quantum key distribution with imperfect devices [J]. Quantum Information and Computation, 2004, 4(5): 325-360.

    [22] [22] Q Wang, X B Wang. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources [J]. Phys Rev A, 2013, 88(5): 052332.

    [23] [23] X Ma, M Razavi. Alternative schemes for measurement-device-independent quantum key distribution [J]. Phys Rev A, 2012, 86(6): 062319.

    [24] [24] Q Wang, A Karlsson. Performance enhancement of a decoy-state quantum key distribution using a conditionally prepared down-conversion source in the Poisson distribution [J]. Phys Rev A, 2007, 76(1): 014309.

    [25] [25] Q Wang, W Chen, G Xavier, et al.. Experimental decoy-state quantum key distribution with a sub-Poissonian heralded single-photon source [J]. Phys Rev Lett, 2008, 100(9): 090501.

    CLP Journals

    [1] Wang Zhe, Yao Zhihai, Gou Lidan, Wang Xiaoqian. Security Analysis of Three-State Quantum Key Distribution Protocol[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122702

    [2] Sun Ying, Zhao Shanghong, Dong Chen. Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources[J]. Acta Optica Sinica, 2016, 36(3): 327001

    [3] He Zhuanling, Guo Dabo, Wang Xiaokai. Security Capacity of Compound Wiretap Channel[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112701

    [4] Sun Ying, Zhao Shanghong, Dong Chen. Passive Measurement Device Independent Quantum Key Distribution Based on Parametric down Conversion Source[J]. Acta Optica Sinica, 2015, 35(12): 1227001

    [5] Jiao Haisong, Wang Yanbo, He Min, Zhu Yong, Zhang Zhiyong. Research about Effect of Phase Drift on Phase-Coding QKD System and Intercept-Resend Attack[J]. Laser & Optoelectronics Progress, 2015, 52(4): 42703

    [6] Gao Yanlei, Lu Xiaogang, Bai Jinhai, Wang Meng, Wu Ling-an, Wang Ruquan, Pang Zhaoguang, Yang Shiping, Fu Panming, Zuo Zhanchun. Avalanche Luminescence Crosstalk between Avalanche Photodiodes[J]. Acta Optica Sinica, 2015, 35(7): 727004

    [7] HE Yefeng, LI Lina, BAI Qian, CHEN Sihao, QIANG Yuwei. Quantum key distribution of detector’s dead time in heralded single photon source[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112

    Tools

    Get Citation

    Copy Citation Text

    Zhu Feng, Wang Qin. Quantum Key Distribution Protocol Based on Heralded Single Photon Source[J]. Acta Optica Sinica, 2014, 34(6): 627002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jan. 10, 2014

    Accepted: --

    Published Online: Apr. 29, 2014

    The Author Email: Zhu Feng (844383041@qq.com)

    DOI:10.3788/aos201434.0627002

    Topics