Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 2909(2022)
Preparation of Bi/SnO10.14062/j.issn.0454-5648.20220329@C Heterostructure Materials and Their Performance in Na-Ion Batteries
[1] [1] XU Y, ZHU Y, LIU Y, et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium‐ion batteries[J]. Adv Energy Mater, 2013, 3(1): 128-133.
[2] [2] LI Z, DING J, MITLIN D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance[J]. Acc Chem Res, 2015, 48(6): 1657-1665.
[3] [3] HUANG J, GUO X, DU X, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries[J]. Energy Environ Sci, 2019, 12(5): 1550-1557.
[4] [4] KANG Y J, CHUN S J, LEE S S, et al. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano, 2012, 6(7): 6400-6406.
[5] [5] ChOI B G, HONG J, HONG W H, et al. Facilitated ion transport in all-solid-state flexible supercapacitors[J]. ACS Nano, 2011, 5(9): 7205-7213.
[6] [6] BHATTACHARYA P, LEE J H, KAR K K, et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery[J]. Chem Eng J, 2019, 369(3): 422-431.
[7] [7] El-Kady M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.
[8] [8] ZHOU X, GUO Y G. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries[J]. ChemElectroChem, 2014, 1(1): 83-86.
[9] [9] DING J, WANG H L, LI Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2015, 12(12): 224-230.
[10] [10] LI S, WANG Y Z, QIU J X, et al. SnO2 decorated graphene nanocomposite anode materials prepared via an up-scalable wet mechanochemical process for sodium ion batteries[J]. RSC Adv, 2014, 4(91): 50148-50152.
[11] [11] SUN Y, ZHAO L, PAN H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room- temperature sodium-ion batteries[J]. Nat Commun, 2013, 4(1): 1-10.
[12] [12] ZHAO L, PAN H L, HU Y S, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chin Phys B, 2012, 21(2): 028201.
[13] [13] WANG W, YU C J, LIIU Y J, et al. Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries[J]. RSC Adv, 2013, 3(4): 1041-1044.
[14] [14] JIAN Z L, ZHAO B, LIU P, et al. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries[J]. Chem Commum, 2014, 50(10): 1215-1217.
[15] [15] XIONG H, SLATER M D, BALASUBRAMANIAN M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. J Phys Chem Lett, 2011, 2(20): 2560-2565.
[16] [16] KO Y N, KANG Y C. Co9S8-Carbon composite as anode materials with improved Na-storage performance[J]. Carbon, 2015, 94: 85-90.
[17] [17] CAO L, LUO B, XU B, et al. Stabilizing intermediate phases via efficient entrapment effects of layered VS4/SnS@C heterostructure for ultralong lifespan potassium-ion batteries[J]. Adv Funct Mater, 2021, 31(36): 2103802.
[18] [18] GU M, KUSHIMA A, Shao Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Lett, 2013, 13(11): 5203-5211.
[19] [19] HUANG Z, CHEN Z, DING S, et al. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification[J]. Mater Lett, 2018, 219(2): 19-22.
[20] [20] SAHOO M, RAMAPRABHU S. One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery[J]. Carbon, 2018, 127(11): 627-635.
[21] [21] WANG Z, DONG K, WANG D, et al. Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries[J]. J Power Sources, 2019, 441(9): 227191.
[22] [22] WU Q, SHAO Q, LI Q, et al. Dual carbon-confined SnO2 hollow nanospheres enabling high performance for the reversible storage of alkali metal ions[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15642-15651.
[23] [23] HAN C, HAN K, WANG X, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries[J]. Nanoscale, 2018, 10(15): 6820-6826.
[24] [24] LI Y, WANG L, MA W, et al. Bio-enzymatic synthesis of nitrogen-doped porous carbon/SnO2/carbon microspheres as high-performance composite materials for lithium-ion and sodium-ion batteries[J]. Int J Hydrogen Energy, 2021, 46(69): 34184-34193.
[25] [25] CHEN X, CAI R, LIU P, et al. Preparation and electrochemical performance of reduced graphene and sno2 nanospheres composite materials for lithium-ion batteries and sodium-ion batteries[J]. Chem Select, 2021, 6(13): 3192-3198.
[26] [26] QIN B, ZHANG H, DIEMANT T, et al. Ultrafast ionic liquid-assisted microwave synthesis of SnO microflowers and their superior sodium-ion storage storage performance[J]. ACS Appl Mater Interfaces, 2017, 9(32): 26797-26804.
[27] [27] NARSIMULU D, NAGARAJU G, SEKHAR S C, et al. Three-dimensional porous SnO2/carbon cloth electrodes for high-performance lithium-and sodium-ion batteries[J]. Appl Surf Sci, 2021, 538(2): 148033.
[28] [28] ROMERO-CANO L A, GARCIA-ROSERO H, CARRASCO-MARIN F, et al. Surface functionalization to abate the irreversible capacity of hard carbons derived from grapefruit peels for sodium-ion batteries[J]. Electrochim Acta, 2019, 326(12): 134973
[29] [29] LIU S, FENG J, BIAN X, et al. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries[J]. J. Mater Chem A, 2016, 4(26): 10098-10104.
[30] [30] MAO J, FAN X, LUO C, et al. Building self-healing alloy architecture for stable sodium-ion battery anodes: a case study of tin anode materials[J]. ACS Appl Mater Interfaces, 2016, 8(11): 7147-7155.
[31] [31] LU Y C, MA C, ALVARADO J, et al. Electrochemical properties of tin oxide anodes for sodium-ion batteries[J]. J. Power Sources, 2015, 284(3): 287-295.
[32] [32] YANG F, YU F, ZHANG Z, et al. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries[J]. Chem Eur J, 2016, 22(7): 2333-2338.
[33] [33] QIU J, LI S, SU X, et al. Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage[J]. Chem Eng J, 2017, 320(3): 300-307.
[34] [34] SU D W, DOU S X, WANG G X. Bismuth: a new anode for the Na-ion battery[J]. Nano Energy, 2015, 12(12): 88-95.
[35] [35] SOTTMANN J, HERRMANN M, VAJEESTON P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying[J]. Chem Mater, 2016, 28(8): 2750-2756.
[36] [36] YANG F H, YU F, ZHANG Z A, et al. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries[J]. Chem Eur J, 2016, 22(7): 2333-2339.
[37] [37] YANG X, LIANG H J, ZHAO X X, et al. A sandwich nanocomposite composed of commercially available SnO and reduced graphene oxide as advanced anode materials for sodium-ion full batteries[J]. Inorg Chem Front, 2021, 8(2): 396-404.
[38] [38] GAO X, KUAI Y, XU Z, et al. SnSe2/FeSe2 Nanocubes capsulated in nitrogen‐doped carbon realizing stable sodium‐ion storage at ultrahigh rate[J]. Small Methods, 2021, 5(9): 2100437.
[39] [39] DIBDEN J W, MEDDINGS N, OWEN J R, et al. Quantitative galvanostatic intermittent titration technique for the analysis of a model system with applications in lithium-sulfur batteries[J]. Chem Electro Chem, 2018, 5(3): 445-454.
[40] [40] ZHANG N, HAN X, LIU Y, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Adv Energy Mater, 2015, 5(5): 1401123.
[41] [41] ZHANG F, ZHU J, ZHANG D, et al. Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries[J]. Nano Lett, 2017, 17(2): 1302-1311.
[42] [42] YAN B, LI X, FU X, et al. An elaborate insight of lithiation behavior of V2O5 anode[J]. Nano Energy, 2020, 78(12): 105233.
Get Citation
Copy Citation Text
GAO Lin, MIAO Shichang, ZHANG Lulu, YANG Xuelin. Preparation of Bi/SnO10.14062/j.issn.0454-5648.20220329@C Heterostructure Materials and Their Performance in Na-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2909
Category:
Received: Apr. 26, 2022
Accepted: --
Published Online: Jan. 27, 2023
The Author Email: GAO Lin (gaolinctgu@hotmail.com)