Chinese Journal of Lasers, Volume. 51, Issue 15, 1507208(2024)

Retinal Vessel Segmentation Based on Dynamic Feature Graph Convolutional Network

Linyi Miao and Feng Li*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    Figures & Tables(12)
    Overall structure of DF-Net
    Vanilla convolution-based SCDB and double dilated convolution block
    Dynamic-feature graph convolutional module
    Visualization of segmentation results for each method on the Fives dataset. (a) Original image; (b) ground truth; (c) U-Net;
    Visualization of segmentation results for each method on the HRF dataset. (a) Original image; (b) ground truth; (c) U-Net;
    Ablation experiment visualization results
    • Table 1. Comparison of experimental results of different methods on the Fives dataset

      View table

      Table 1. Comparison of experimental results of different methods on the Fives dataset

      ModelYearAccSeSpAUCF1CMCC
      U-Net720150.98460.88580.98370.99220.88890.8810
      Deeplab V3+3320180.98450.89050.99230.99340.88940.8874
      Attention U-Net1020180.98340.89910.98990.99280.89230.8866
      U-Net++3420200.98440.89770.99110.99320.89150.8832
      OCE-Net1020220.98460.89740.99290.99360.89060.8824
      SGAT-Net3520230.98570.89430.99420.99260.89590.8959
      G-CASCADE3620230.98690.89840.99250.99320.90230.8963
      DF-Net20240.98760.90880.99360.99500.91250.9059
    • Table 2. Comparison of experimental results of different methods on the HRF dataset

      View table

      Table 2. Comparison of experimental results of different methods on the HRF dataset

      ModelYearAccSeSpAUCF1CMCC
      U-Net720150.96730.77810.98090.97860.77980.7726
      Deeplab V3+3320180.96490.78100.98370.98130.78450.7785
      Attention U-Net1020180.96350.78800.98010.98090.78280.7789
      U-Net++3420200.96540.79390.98360.98230.79930.7980
      OCE-Net1120220.96870.83570.98280.98490.82270.8111
      SGAT-Net3520230.96800.82030.98400.98380.82230.8110
      G-CASCADE3620230.96820.81890.98320.98250.81870.8089
      DF-Net20240.97330.83220.98370.98560.83180.8202
    • Table 3. Comparison of experimental results of different methods on the DRIVE dataset

      View table

      Table 3. Comparison of experimental results of different methods on the DRIVE dataset

      ModelYearAccSeSpAUCF1CMCC
      U-Net720150.95340.78430.98100.97680.81120.8086
      Deeplab V3+3320180.95180.78200.98000.97580.79830.7846
      Attention U-Net1020180.95800.81630.98260.98420.80490.7860
      U-Net++3420200.95860.82560.98230.98540.81240.8043
      OCE-Net1120220.96110.81640.98040.98310.82890.8118
      SGAT-Net3520230.96620.80260.97860.98000.83290.8176
      G-CASCADE3620230.96420.81000.98240.98130.82800.8154
      DF-Net20240.97000.80810.98650.98610.82600.8081
    • Table 4. Comparison of experimental results of different methods on the STARE dataset

      View table

      Table 4. Comparison of experimental results of different methods on the STARE dataset

      ModelYearAccSeSpAUCF1CMCC
      U-Net720150.97120.81670.98380.98570.81120.7707
      Deeplab V3+3320180.97140.80780.98290.98490.81180.7898
      Attention U-Net1020180.97170.81530.98440.98620.81270.7975
      U-Net++3420200.97330.82640.98510.98830.82400.8097
      OCE-Net1120220.97420.82120.98650.98760.83410.8164
      SGAT-Net3520230.97680.83280.98720.99340.84450.8206
      G-CASCADE3620230.97460.82320.98680.98700.83480.8132
      DF-Net20240.97640.82790.98740.99180.84030.8161
    • Table 5. Comparison of experimental results of different methods on the CHASE_DB1 dataset

      View table

      Table 5. Comparison of experimental results of different methods on the CHASE_DB1 dataset

      ModelYearAccSeSpAUCF1CMCC
      U-Net720150.96760.76500.97840.97830.76980.7432
      Deeplab V3+3320180.97230.79800.98270.9800.78550.7667
      Attention U-Net1020180.97410.81250.98430.98470.79980.7863
      U-Net++3420200.97530.82170.98500.98610.80940.7965
      OCE-Net1120220.97780.83380.98240.98720.81860.7980
      SGAT-Net3520230.97720.83780.98640.98960.82360.8012
      G-CASCADE3620230.97700.83550.98480.98680.82260.7989
      DF-Net20240.97600.83960.98590.99010.82540.8042
    • Table 6. Comparison of ablation experimental results

      View table

      Table 6. Comparison of ablation experimental results

      ModelAccSeSpAUCF1CMCC
      U-Net(Baseline)0.97890.87580.98870.97220.88230.8710
      U-Net+SDCB0.98430.87830.99020.98290.89170.8835
      U-Net+dilated_SDCB0.98490.88310.99290.98610.89460.8878
      U-Net+DDCB0.98520.89580.99370.99210.89890.8932
      U-Net+DFGCM0.98660.89520.99360.99440.90520.8981
      U-Net+DDCB+DFGCM (ours)0.98760.90880.99360.99490.91260.9059
    Tools

    Get Citation

    Copy Citation Text

    Linyi Miao, Feng Li. Retinal Vessel Segmentation Based on Dynamic Feature Graph Convolutional Network[J]. Chinese Journal of Lasers, 2024, 51(15): 1507208

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Diagnostics and Therapy

    Received: Jan. 15, 2024

    Accepted: Mar. 6, 2024

    Published Online: Jul. 16, 2024

    The Author Email: Li Feng (lifenggold@163.com)

    DOI:10.3788/CJL240498

    CSTR:32183.14.CJL240498

    Topics