Acta Optica Sinica, Volume. 43, Issue 2, 0217002(2023)

Non-Contact Skin Blood Perfusion Imaging Based on IPPG

Li Zhao1、**, Peng Zhou1,2、*, Jingjing Luo3,4, Qiang Xi5, Hui Yu2, and Yi Guo5
Author Affiliations
  • 1Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
  • 2School of Precision Instrument and Opto-Electronics Engineering, Tianjin 300072, China
  • 3Academy for Engineering & Technology, Fudan University, Shanghai 200043, China
  • 4Ji Hua Laboratory, Foshan 528200, Guangdong, China
  • 5Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
  • show less
    References(26)

    [1] Mills J L, Conte M S, Armstrong D G et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on Wound, Ischemia, and foot Infection (WIfI)[J]. Journal of Vascular Surgery, 59, 220-234(2014).

    [2] Jayanthy A K, Sujatha N, Reddy M R. Laser speckle contrast imaging for perfusion monitoring in burn tissue phantoms[M]. Osman N A A, Abas W A B W, Wahab A K A, et al. 5th Kuala Lumpur international conference on biomedical engineering 2011, 35, 443-446(2011).

    [3] Jude E B, Eleftheriadou I, Tentolouris N. Peripheral arterial disease in diabetes: a review[J]. Diabetic Medicine, 27, 4-14(2010).

    [4] Liu D Z, Mathes D W, Zenn M R et al. The application of indocyanine green fluorescence angiography in plastic surgery[J]. Journal of Reconstructive Microsurgery, 27, 355-364(2011).

    [5] Vartanian S M, Conte M S. Surgical intervention for peripheral arterial disease[J]. Circulation Research, 116, 1614-1628(2015).

    [6] Deegan A J, Wang R K. Microvascular imaging of the skin[J]. Physics in Medicine and Biology, 64, 07TR01(2019).

    [7] Li Z, Feng J C, Jia K B. Diffusion correlation spectroscopy for tissue blood flow monitoring and its clinical applications[J]. Laser & Optoelectronics Progress, 59, 0617006(2022).

    [8] Wu Q, Zhou W, Xu B T et al. Laparoscopic laser speckle blood flow imaging technology[J]. Acta Optica Sinica, 42, 0717001(2022).

    [9] Allen J, Howell K. Microvascular imaging: techniques and opportunities for clinical physiological measurements[J]. Physiological Measurement, 35, R91-R141(2014).

    [10] Chen X, Cheng J, Song R C et al. Video-based heart rate measurement: recent advances and future prospects[J]. IEEE Transactions on Instrumentation and Measurement, 68, 3600-3615(2019).

    [11] Khanam F T Z, Al-Naji A, Chahl J. Remote monitoring of vital signs in diverse non-clinical and clinical scenarios using computer vision systems: a review[J]. Applied Sciences, 9, 4474(2019).

    [12] Kong L Q, Chen F, Zhao Y J et al. Non-contact psychological stress detection combining heart rate variability and facial expressions[J]. Acta Optica Sinica, 41, 0310003(2021).

    [13] Wu F, Peng L, Han P et al. Research on non-contact heart rate measurement method based on self-optimizing normalized least mean square algorithm[J]. Laser & Optoelectronics Progress, 58, 2011004(2021).

    [14] Verkruysse W, Svaasand L O, Nelson J S. Remote plethysmographic imaging using ambient light[J]. Optics Express, 16, 21434-21445(2008).

    [15] Kamshilin A A, Volynsky M A, Khayrutdinova O et al. Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography[J]. The Journal of Headache and Pain, 19, 43(2018).

    [16] Zaunseder S, Trumpp A, Ernst H et al. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography[J]. Proceedings of SPIE, 10501, 105010X(2018).

    [17] Volynsky M A, Margaryants N B, Mamontov O V et al. Contactless monitoring of microcirculation reaction on local temperature changes[J]. Applied Sciences, 9, 4947(2019).

    [18] Rubins U, Marcinkevics Z, Muckle R A et al. Remote photoplethysmography for assessment of oral mucosa[C], 11073-50(2019).

    [19] Mamontov O V, Krasnikova T V, Volynsky M A et al. Novel instrumental markers of proximal scleroderma provided by imaging photoplethysmography[J]. Physiological Measurement, 41, 044004(2020).

    [20] Kumar M, Suliburk J W, Veeraraghavan A et al. PulseCam: a camera-based, motion-robust and highly sensitive blood perfusion imaging modality[J]. Scientific Reports, 10, 4825(2020).

    [21] Mamontov O V, Shcherbinin A V, Romashko R V et al. Intraoperative imaging of cortical blood flow by camera-based photoplethysmography at green light[J]. Applied Sciences, 10, 6192(2020).

    [22] Lai M, van der Stel S D, Groen H C et al. Imaging PPG for in vivo human tissue perfusion assessment during surgery[J]. Journal of Imaging, 8, 94(2022).

    [23] Kamshilin A A, Zaytsev V V, Lodygin A V et al. Imaging photoplethysmography as an easy-to-use tool for monitoring changes in tissue blood perfusion during abdominal surgery[J]. Scientific Reports, 12, 1143(2022).

    [24] Zhou L, Yu J J, Liu Z H et al. Simulation study on spectral characteristics of skin tissue and volume pulse wave in 400-1000 nm wavelength[J]. Spectroscopy and Spectral Analysis, 40, 1071-1075(2020).

    [26] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C], 674-679(1981).

    Tools

    Get Citation

    Copy Citation Text

    Li Zhao, Peng Zhou, Jingjing Luo, Qiang Xi, Hui Yu, Yi Guo. Non-Contact Skin Blood Perfusion Imaging Based on IPPG[J]. Acta Optica Sinica, 2023, 43(2): 0217002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical optics and biotechnology

    Received: Jun. 28, 2022

    Accepted: Jul. 18, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Zhao Li (liz2020@tju.edu.cn), Zhou Peng (zpzp@tju.edu.cn)

    DOI:10.3788/AOS221380

    Topics