Journal of Optoelectronics · Laser, Volume. 36, Issue 2, 136(2025)
Colorectal polyp segmentation method fusing Transformer and cross-cue fusion
[3] [3] LI W, ZHAO Y, LI F, et al. MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation[J]. Knowledge-Based Systems, 2022, 247:108824.
[4] [4] LIANG H, CHENG Z, ZHONG H, et al. A region-based convolutional network for nuclei detection and segmentation in microscopy images[J]. Biomedical Signal Processing and Control, 2022, 71:103276.
[5] [5] SHAO D, XU C, XIANG Y, et al. Ultrasound image segmentation with multilevel threshold based on differential search algorithm[J]. IET Image Processing, 2019, 13(6):998-1005.
[7] [7] ALI S M F, KHAN M T, HAIDER S U, et al. Depth-wise separable atrous convolution for polyps segmentation in gastro-intestinal tract[C/OL]//MediaEval. (2020-12-14) [2023-07-05]. https://ceur-ws.org/Vol-2882/paper31.pdf.
[8] [8] KHAN M A, KHAN M A, AHMED F, et al. Gastrointestinal diseases segmentation and classification based on duo-deep architectures[J]. Pattern Recognition Letters, 2020, 131:193-204.
[9] [9] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. (2018-05-20)[2023-07-05]. https:/arxiv.org/abs/1804.03999.
[10] [10] FAN D P, Ji G P, ZHOU T, et al. PraNet: Parallel reverse attention network for polyp segmentation[C]//International Conference on Medical Image Computing and Computer Assisted Intervention, October 4-8, 2020, Lima, Peru. Cham: Springer International Publishing, 2020:263-273.
[11] [11] DAI Y, GAO Y, LIU F. Transmed: Transformers advance multi-modal medical image classification[J]. Diagnostics, 2021, 11(8):1384.
[12] [12] PENG Z, HUANG W, GU S, et al. Conformer: Local features coupling global representations for visual recognition[C]//2021 IEEE/CVF International Conference on Computer Vision, October 10-17, 2021, Montreal, QC, Canda. New York: IEEE, 2021:357-366.
[13] [13] WANG J, HUANG Q, TANG F, et al. Stepwise feature fusion: local guides global[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2022:25th International Conference, September 18-22, 2022, Singapore. Cham: Springer Nature, 2022:110-120.
[14] [14] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015:3431-3440.
[15] [15] JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet++: An advanced architecture for medical image segmentation[C]//2019 IEEE International Symposium on Multimedia (ISM), December 9-11, 2019, San Diego, CA, USA. New York: IEEE, 2019:225-2255.
[16] [16] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
[17] [17] DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019:11065-11074.
[18] [18] QIU S, LI C, FENG Y, et al. GFANet: Gated fusion attention network for skin lesion segmentation[J]. Computers in Biology and Medicine, 2023, 155:106462.
[19] [19] QIN Z, ZHANG P, WU F, et al. FcaNet: Frequency channel attention networks[C]//IEEE/CVF International Conference on Computer Vision, October 10-17, Montreal, QC, Canada. New York: IEEE, 2021:783-792.
[20] [20] LI R, GONG D, YIN W, et al. Learning to fuse monocular and multi-view cues for multi-frame depth estimation in dynamic scenes[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-22, 2023, Vancouver, Canada. New York: IEEE, 2023:21539-21548.
[21] [21] BERNAL J, SANCHEZ F J, FERNANDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43:99-111.
[22] [22] AMSALEG L, HUET B, LARSON M, et al. Proceedings of the 27th ACM International Conference on Multimedia[M]. New York: ACM Press, 2019.
[23] [23] TAJBAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2015, 35(2):630-644.
[24] [24] SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9:283-293.
[25] [25] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, October 5-9, 2015, Munich, Germany. Cham: Springer, 2015:234-241.
[26] [26] PATEL K, BUR A M, WANG G. Enhanced U-net: A feature enhancement network for polyp segmentation[C]//2021 18th Conference on Robots and Vision (CRV), May 26-28, 2021, Burnaby, BC, Canada. New York: IEEE, 2021:181-188.
[27] [27] YIN Z, LIANG K, MA Z, et al. Duplex contextual relation network for polyp segmentation[C]//2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), March 28-31, 2022, Kolkata, India. New York: IEEE, 2022:1-5.
[28] [28] WU C, LONG C, LI S, et al. MSRAformer: Multiscale spatial reverse attention network for polyp segmentation[J]. Computers in Biology and Medicine, 2022, 151:106274.
Get Citation
Copy Citation Text
LIANG Liming, LI Yulin, JIN Jiaxin, HE Anjun, XIA Yuchen. Colorectal polyp segmentation method fusing Transformer and cross-cue fusion[J]. Journal of Optoelectronics · Laser, 2025, 36(2): 136
Category:
Received: Jul. 5, 2023
Accepted: Jan. 23, 2025
Published Online: Jan. 23, 2025
The Author Email: LIANG Liming (liyulin000821@163.com)