Spectroscopy and Spectral Analysis, Volume. 34, Issue 2, 505(2014)

An Accurate Approach to Hyperspectral Mineral Identification Based on Naive Bayesian Classification Model

HE Jin-xin1、*, CHEN Sheng-bo2, WANG Yang3, and WU Yan-fan3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(4)

    [6] [6] Clark M I, Roberts D A, Clark D B. Remote Sensing of Environment, 2005. 96: 375.

    [7] [7] Du Y Z, Chang C I, Ren H , et al. Optical Engineering, 2004, 43(8): 1777.

    [8] [8] Glenn N F, Mundt J T, Weber K. Remote Sensing of Environment, 2005, 95: 399.

    [9] [9] Wang S, Chang C I. IEEE Transaction on Geoscience and Remote Sensing, 2006. 44(6): 1575.

    CLP Journals

    [1] YAN Jing-wen, CHEN Hong-da, LIU Lei. Overview of hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 680

    [2] ZHANG Cheng-ye, QIN Qi-ming, Chen Li, Wang Nan, Zhao Shan-shan. Research and development of mineral identification utilizing hyperspectral remote sensing[J]. Optics and Precision Engineering, 2015, 23(8): 2407

    Tools

    Get Citation

    Copy Citation Text

    HE Jin-xin, CHEN Sheng-bo, WANG Yang, WU Yan-fan. An Accurate Approach to Hyperspectral Mineral Identification Based on Naive Bayesian Classification Model[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 1, 2013

    Accepted: --

    Published Online: Jan. 13, 2015

    The Author Email: HE Jin-xin (hejx@jlu.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2014)02-0505-05

    Topics