NUCLEAR TECHNIQUES, Volume. 46, Issue 2, 020606(2023)

Shielding design of a megawatt-scale heat pipe reactor core

Yongping WANG1, Yushan TAO2, Yunqin WU1, Youqi ZHENG1、*, and Xianan DU1
Author Affiliations
  • 1Xi'an Jiaotong University, Xi'an 710049, China
  • 2Nuclear Power Institute of China, Chengdu 610213, China
  • show less
    Figures & Tables(21)
    Radial layout of UPR-s (color online)
    Layout of the UUV system and pressure tank (color online)
    Diagram of shielding region of the UUV
    Neutron energy spectrum of UPR-s under full-power operating conditions
    Calculation results of source intensity after shutdown (a) Neutron source intensity versus time, (b) Photon source intensity versus time
    The spectrum of UPR-s after shutdown (a) Neutron spectrum, (b) Photon spectrum
    Diagram of initial shielding model (color online)
    Two composite shielding models (a) Poly-LiH-W layout scheme, (b) LiH-Poly-W layout scheme
    Calculation results for Poly-LiH-W shielding models (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane
    Shadow shielding model (color online)
    Calculation results for the shadow shielding model (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane, (c) Neutron fluence changes with axial coordinates, (d) Photon dose changes with axial coordinates
    Structure of optimized shielding design
    Calculation results for the shielding model under full-power operating conditions (a) Neutron fluence in the safety plane, (b) Photon dose in the safety plane, (c) Neutron fluence changes with axial coordinates, (d) Photon dose changes with axial coordinates
    Calculation results for the shielding model after shutdown (a) Change in maximum dose rate in the safety plane with time, (b) Dose rate in the safety plane after 15 d of shutdown, (c) Dose rate in the safety plane after 15 d of shutdown, (d) Change in dose rate with axial coordinates after 15 d of shutdown
    • Table 1. Overall design parameters of UPR-s

      View table
      View in Article

      Table 1. Overall design parameters of UPR-s

      参数Parameter数值Value
      热功率Thermal Power / MWth1
      寿期Life / a5
      热管数目Number of heat pipe109
      燃料棒数目Number of fuel rod480
      富集度Enrichment / %73/55/19.75
      三种UO2燃料棒数目Number of three UO2 fuel rod332/108/40
      活性区基体材料Active zone matrix materialMo-0.59W-0.31Ti-0.11Zr-0.01C
      上下反射层材料Upper and bottom reflector materialBeO
      保温层厚度Thickness of insulation layer / mm3.3
      滑动反射层/控制棒数目Number of sliding reflector/ Control rod4/4
      滑动反射层反射体(跟随体)材料Sliding reflector (follower) materialBeO (Stainless steel)
      安全棒反射体(跟随体)材料Safety rod reflector (follower) materialBeO (B4C)
      燃料区外围区域反射层材料Fuel region reflector materialBe
      反射层外部材料Material outside reflectorB4C
      活性区体积Volume of active region / L93.61
      活性区高度Height of active region / mm450
      反应堆高度Height of reactor / mm900
      反射层外径Outer radius of reflector / mm960
      反应堆外径Outer radius of reactor / mm1 000
    • Table 2. Sizes and materials of different regions

      View table
      View in Article

      Table 2. Sizes and materials of different regions

      区域

      Regions

      尺寸

      Sizes / cm

      材料

      Materials

      体积占比

      Volume ratio / %

      活性区(含热管)

      Active zone (including heat pipe)

      Φ25.73×H4573 wt% UO217.45
      55 wt% UO25.68
      19.75 wt% UO22.10
      氦气Helium0.86
      钼合金Molybdenum alloy36.87
      Na10.36
      Haynes23313.34
      真空Vacuum13.33

      上(下)轴向反射层

      Upper (lower) axial reflector

      Φ25.73×H22.5

      -热管Heat pipe

      BeO92.80
      钼合金Molybdenum alloy7.20

      径向反射层

      Radial reflector

      Φ48×H90

      -Φ25.73×H90

      钼合金Molybdenum alloy0.11
      BeO23.06
      不锈钢Stainless steel2.02
      Be68.75
      真空Vacuum6.06

      径向屏蔽层

      Radial shielding

      Φ50×H90

      -Φ48×H90

      B4C100.00

      热管(从活性区外部伸出建模)

      Heat pipes (outside the active zone)

      Φ1.5×H151.5Na27.98
      Haynes23336.02
      真空Vacuum36.00

      温差发电(区域中心与活性区中心距离为139.5 cm)

      Thermoelectric power generation (the distance

      between the center of the area and the center

      of the active zone is 139.5 cm)

      X45×Y49.5×Z114

      -热管Heat pipe

      Al74.16
      H2O6.02
      真空Vacuum19.82

      仪器打混

      Instrument mix

      不锈钢Stainless steel10.00
      真空Vacuum90.00
    • Table 3. Candidate shielding materials

      View table
      View in Article

      Table 3. Candidate shielding materials

      材料Material作用Function密度Density / g·cm-3
      碳化硼B4C中子屏蔽Neutron shielding2.22
      水Water中子屏蔽Neutron shielding1.00
      铍Be中子屏蔽Neutron shielding1.85
      聚乙烯Polyethylene中子屏蔽Neutron shielding0.96
      氢化锂LiH中子屏蔽Neutron shielding0.82
      钨Wolfram光子屏蔽Photon shielding19.35
      铅Lead光子屏蔽Photon shielding11.34
      不锈钢Stainless steel光子屏蔽Photon shielding7.80
    • Table 4. Calculation results for the candidate materials

      View table
      View in Article

      Table 4. Calculation results for the candidate materials

      材料

      Material

      安全平面的累积

      快中子注量最大值

      Maximum cumulative fast

      neutron fluence in the safety

      plane / n·cm-2

      安全平面的累积

      光子剂量最大值

      Maximum cumulative

      photon dose at the

      safety plane / rad

      屏蔽总重量

      (加后端聚乙烯)

      Total weight of shielding

      plus rear end polyethylene

      / kg

      堆芯加屏蔽重量

      Core and shielding

      weight / kg

      无(真空)None (vacuum)8.31×10137.42×106755.552 603.80
      碳化硼B4C3.27×10115.18×1051 998.513 846.76
      水Water4.78×10111.49×1061 315.443 163.70
      铍Be4.57×10111.39×1061 791.353 639.60
      聚乙烯Polyethylene2.22×10111.53×1061 294.173 142.42
      氢化锂LiH1.93×10111.57×1061 214.663 062.91
      钨Wolfram3.56×10114.78×10411 589.4413 437.69
      铅Lead1.18×10131.49×1067 106.798 955.04
      不锈钢Stainless steel6.78×10127.36×1055 124.496 972.74
    • Table 5. Calculation results for the two composite shielding models

      View table
      View in Article

      Table 5. Calculation results for the two composite shielding models

      材料Material

      安全平面的累积快

      中子注量最大值

      Maximum cumulative fast neutron

      fluence in the safety plane

      / n·cm-2

      安全平面的累积

      光子剂量最大值

      Maximum cumulative

      photon dose at the safety

      plane / rad

      屏蔽总重量

      (加后端聚乙烯)

      Total weight of shielding

      plus rear end polyethylene

      / kg

      堆芯加屏蔽重量

      Core and shielding

      weight / kg

      Poly-LiH-W1.80×10119.47×1042 561.764 410.02
      LiH-Poly-W1.86×10118.34×1042 608.614 456.86
    • Table 6. Parameters of the optimized shielding design

      View table
      View in Article

      Table 6. Parameters of the optimized shielding design

      区域

      Area

      几何尺寸

      Geometric size / cm

      密度

      Density / g·cm-3

      体积

      Volume / cm3

      数目

      Number

      重量

      Weight / kg

      活性区(含热管)

      Active zone (including heat pipe)

      Φ25.73×H45

      堆芯重量1 848.25

      Weight of the core

      上(下)轴向反射层

      Upper (lower) axial reflector

      Φ25.73×H22.5

      -热管Heat pipe

      径向反射层

      Radial reflector

      Φ48×H90

      -Φ25.73×H90

      径向屏蔽层

      Radial shielding

      Φ50×H90

      -Φ48×H90

      热管(从活性区外部伸出建模)

      Heat pipes (outside the active zone)

      Φ1.5×H151.5109

      不计热管重量

      Not count the

      weight of heat pipes

      前端钨

      Front wolfram

      Φ50×H0.7

      -Φ25.73×H0.7

      19.354 041.902156.42

      前端聚乙烯

      Front Polyethylene

      Φ25.73×H0.7

      -热管Heat pipe

      0.9621 183.7522.28

      聚乙烯①

      Polyethylene①

      R1 25.73×R2 50×H13.6

      -热管Heat pipe

      0.96258 068.202111.72

      水①

      Water①

      Φ50×H3.6

      -热管Heat pipe

      126 874.75253.75

      不锈钢套管①

      Stainless steel sleeve①

      Φ50×H4.2

      -Φ50×H3.6

      -热管Heat pipe

      7.804 479.13269.90

      聚乙烯②

      Polyethylene②

      R1 50×R2 25.73×H14.3

      -热管Heat pipe

      0.96261 057.012117.47

      水②

      Water②

      Φ50×H3.6

      -热管Heat pipe

      126 874.75253.75

      不锈钢套管②

      Stainless Steel Sleeve②

      Φ50×H4.2

      50×H3.6

      -热管Heat pipe

      7.804 479.13269.90

      后端钨

      Back end wolfram

      Φ50×H0.5

      -热管Heat pipe

      19.353 732.602144.45

      温差发电(区域中心与活性区

      中心距离为139.5 cm)

      Thermoelectric power generation (the distance between the center of the area and the center of the active zone is 139.5 cm)

      X45×Y49.5×Z114

      -热管Heat pipe

      不计

      Not count

      后端聚乙烯(壳体内)

      Back end polyethylene (inside the shell)

      Φ50×H150.962117 809.722226.67

      后端聚乙烯(壳体外)

      Back end polyethylene (outside the shell)

      Φ100×H4

      -Φ75×H4

      0.96254 977.872105.78

      内壳体

      Inner shell

      Φ110×H550

      -Φ100×H540

      不计

      Not count

      外壳体

      Outer shell

      Φ150×H550

      -Φ140×H550

      不计

      Not count

      海水(双壳体内)

      Sea water (in double shell)

      Φ140×H550

      -Φ110×H550

      不计

      Not count

      海水(舱室外)

      Sea water (outside the cabin)

      X240×Y240×Z640

      -Φ200×H640

      不计

      Not count

      仪器打混

      Instrument mix

      其他区域

      Other areas

      不计

      Not count

      总和SumX240×Y240×Z6402 960.35
    • Table 7. Shielding performance of the heat pipe nuclear reactor

      View table
      View in Article

      Table 7. Shielding performance of the heat pipe nuclear reactor

      满功率运行时安全平面

      的累积快中子注量

      Cumulative fast neutron fluence in the safety plane under

      full-power operation

      / n·cm-2

      满功率运行时安全

      平面的累积光子剂量

      Cumulative photon dose

      in the safety plane under

      full-power operation

      / rad

      停堆条件下,阴影区

      总剂量率

      Total dose rate in the

      shaded area under

      shutdown conditions

      / mSv·h-1

      堆芯加屏蔽重量

      Core and shielding

      weight / kg

      设计要求

      Design requirements

      ≤ 1012≤ 106≤ 0.007 50≤ 3 000.00

      最终方案

      Final scheme

      9.48×1011

      (maximum)

      7.29×105

      (maximum)

      0.004 49

      (maximum)

      2 960.35
    Tools

    Get Citation

    Copy Citation Text

    Yongping WANG, Yushan TAO, Yunqin WU, Youqi ZHENG, Xianan DU. Shielding design of a megawatt-scale heat pipe reactor core[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020606

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 11, 2022

    Accepted: --

    Published Online: Mar. 2, 2023

    The Author Email: ZHENG Youqi (yqzheng@xjtu.edu.cn)

    DOI:10.11889/j.0253-3219.2023.hjs.46.020606

    Topics