Infrared and Laser Engineering, Volume. 51, Issue 1, 20220017(2022)

Review, current status and prospect of researches on information optical imaging (Invited)

Shensheng Han1,2 and Chenyu Hu1,2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 2Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(127)

    [1] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 27, 379-423(1948).

    [2] [2] Blahut R E. Principles Practice of Infmation They[M].US: AddisonWesley Longman Publishing Co., Inc., 1987.

    [3] [3] Barrett H H, Myers K J. Foundations of Image Science[M]. US: John Wiley & Sons, 2013.

    [4] Gabor D. IV light and information[J]. Progress in Optics, 1, 109-153(1961).

    [5] Di Francia G T. Degrees of freedom of an image[J]. JOSA A, 59, 799-804(1969).

    [6] Ernst A. Contributions to the theory of the microscope and the nature of microscopic vision[J]. Archive for Microscopic Anatomy, 9, 413-418(1873).

    [7] Slepian D. Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions[J]. Bell System Technical Journal, 43, 3009-3057(1964).

    [8] [8] Tao Chunkan, Tao Chunkuang, Optical Infmation They[M]. Beijing: Science Press, 1999: 121129. (in Chinese)

    [9] Stern A, Javidi B. Shannon number and information capacity of three-dimensional integral imaging[J]. JOSA A, 21, 1602-1612(2004).

    [10] de Micheli E, Viano G A. Inverse optical imaging viewed as a backward channel communication problem[J]. JOSA A, 26, 1393-1402(2009).

    [11] Abbe E. XV. —The relation of aperture and power in the microscope (continued)[J]. Journal of the Royal Microscopical Society, 3, 790-812(1883).

    [12] Rayleigh L. XXXI. Investigations in optics, with special reference to the spectroscope[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8, 261-274(1879).

    [13] King G W, Emslie A G. Spectroscopy from the point of view of the communication theory[J]. JOSA A, 41, 405-412(1951).

    [14] Di Francia G T. Resolving power and information[J]. JOSA A, 45, 497-501(1955).

    [15] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. JOSA A, 56, 1463-1471(1966).

    [16] Bershad N J. Resolution, optical-channel capacity and information theory[J]. JOSA A, 59, 157-163(1969).

    [17] Fried D L. Resolution, signal-to-noise ratio, and measurement precision[J]. JOSA A, 69, 399-406(1979).

    [18] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system[J]. JOSA A, 3, 1152-1158(1986).

    [19] Kosarev E L. Shannon's superresolution limit for signal recovery[J]. Inverse Problems, 6, 55(1990).

    [20] Narimanov E. Resolution limit of label-free far-field microscopy[J]. Advanced Photonics, 1, 056003(2019).

    [21] Harris J L. Resolving power and decision theory[J]. JOSA A, 54, 606-611(1964).

    [22] Helstrom C. The detection and resolution of optical signals[J]. IEEE Transactions on Information Theory, 10, 275-287(1964).

    [23] Helstrom C. Detection and resolution of incoherent objects by a background-limited optical system[J]. JOSA A, 59, 164-175(1969).

    [24] Helstrom C. Resolvability of objects from the standpoint of statistical parameter estimation[J]. JOSA A, 60, 659-666(1970).

    [25] Fisher R A. On the mathematical foundations of theoretical statistics[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222, 309-368(1922).

    [26] Lucy L B. Statistical limits to super resolution[J]. Astronomy and Astrophysics, 261, 706(1992).

    [27] Bettens E, Van Dyck D, Den Dekker A J, et al. Model-based two-object resolution from observations having counting statistics[J]. Ultramicroscopy, 77, 37-48(1999).

    [28] Smith S T. Statistical resolution limits and the complexified cramér-rao bound[J]. IEEE Transactions on Signal Processing, 53, 1597-1609(2005).

    [29] Ram S, Ward E S, Ober R J. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy[J]. Proceedings of the National Academy of Sciences, 103, 4457-4462(2006).

    [30] Sentenac A, Guérin C A, Chaumet P C, et al. Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis[J]. Optics Express, 15, 1340-1347(2007).

    [31] Betzig E, Chichester R J. Single molecules observed by near-field scanning optical microscopy[J]. Science, 262, 1422-1425(1993).

    [32] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [33] Zhang H K, Chen X, Liu W, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 10, 1-10(2019).

    [34] [34] Vlaardingerbroek M T, Boer J A. Magic Resonance Imaging: They Practice[M]. New Yk: Springer Science & Business Media, 2013.

    [35] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [36] Neupane B, Ligler F S, Wang G. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging[J]. Journal of Biomedical Optics, 19, 080901(2014).

    [37] Harris J L. Diffraction and resolving power[J]. JOSA A, 54, 931-936(1964).

    [38] Banham M R, Katsaggelos A K. Digital image restoration[J]. IEEE Signal Processing Magazine, 14, 24-41(1997).

    [39] [39] Wiener N. Extrapolation, Interpolation Smoothing of Stationary Time Series with Engineering Applications[M]. New Yk: John Wiley, 1949.

    [40] Sekko E, Thomas G, Boukrouche A. A deconvolution technique using optimal Wiener filtering and regularization[J]. Signal Processing, 72, 23-32(1999).

    [41] Lucy L B. Resolution limits for deconvolved images[J]. The Astronomical Journal, 104, 1260-1265(1992).

    [42] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [43] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [44] Fales C L, Huck F O, Samms R W. Imaging system design for improved information capacity[J]. Applied Optics, 23, 872-888(1984).

    [45] Huck F O, Fales C L, Halyo N, et al. Image gathering and processing: information and fidelity[J]. JOSA A, 2, 1644-1666(1985).

    [46] Huck F O, Fales C L, McCormick J A, et al. Image-gathering system design for information and fidelity[J]. JOSA A, 5, 285-299(1988).

    [47] Alter-Gartenberg R. Information metric as a design tool for optoelectronic imaging systems[J]. Applied Optics, 39, 1743-1760(2000).

    [48] Carretero L, Fimia A, Beléndez A. Entropy-based study of imaging quality in holographic optical elements[J]. Optics Letters, 19, 1355-1357(1994).

    [49] Chou W C, Neifeld M A, Xuan R. Information-based optical design for binary-valued imagery[J]. Applied Optics, 39, 1731-1742(2000).

    [50] Chi X F, Shi W X, Han C Y, et al. Information-theory based optimizing design methods in sampled-imaging system[J]. Journal of China Institute of Communications, 23, 88-93(2002).

    [51] Han C Y, Yu Y H. Design methods of CCD detection system and the statistical characteristics of sampled targets[J]. Journal of Jilin University (Information Science Edition), 20, 23-26(2002).

    [52] Chi X F, Han C Y, Yi Z D. Matching design methods based on information theory in sampled imaging systems[J]. Acta Optica Sinica, 23, 278-283(2003).

    [53] Chi X F, Han C Y, Yi Z D. Undersampled noise analysis and integral electro-optical design[J]. Opto-Electronic Engineering, 30, 56-59(2003).

    [54] Neifeld M A, Ashok A, Baheti P K. Task-specific information for imaging system analysis[J]. JOSA A, 24, B25-B41(2007).

    [55] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [56] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review[J]. Optics Express, 28, 28190-28208(2020).

    [57] Yuan X, Brady D J, Katsaggelos A K. Snapshot compressive imaging: Theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 38, 65-88(2021).

    [58] Gao L, Liang J, Li C, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).

    [59] Qi D, Zhang S, Yang C, et al. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2, 014003(2020).

    [60] Pavani S R P, Thompson M A, Biteen J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences, 106, 2995-2999(2009).

    [61] Shechtman Y, Sahl S J, Backer A S, et al. Optimal point spread function design for 3 D imaging[J]. Physical Review Letters, 113, 133902(2014).

    [62] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).

    [63] [63] Buzug T M. Computed Tomography[M]Springer Hbook of Medical Technology, Heidelberg: Springer, 2011: 311342.

    [64] Descour M, Dereniak E. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results[J]. Applied Optics, 34, 4817-4826(1995).

    [65] [65] Ng R, Levoy M, Brédif M, et al. Light field photography with a hheld plenoptic camera[D]. US: Stanfd University, 2005.

    [66] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon ''ghost'' interference and diffraction[J]. Physical Review Letters, 74, 3600(1995).

    [67] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).

    [68] Bennink R S, Bentley S J, Boyd R W, et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 92, 033601(2004).

    [69] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [70] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters Series A. Mathematical and Physical Sciences, 93, 093602(2004).

    [71] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [72] Erkmen B I. Computational ghost imaging for remote sensing[J]. JOSA A, 29, 782-789(2012).

    [73] Sun B, Edgar M P, Bowman R, et al. 3 D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [74] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [75] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 6, 25718(2016).

    [76] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing[J]. IEEE Photonics Technology Letters, 28, 288-291(2015).

    [77] Shi D, Hu S, Wang Y. Polarimetric ghost imaging[J]. Optics Letters, 39, 1231-1234(2014).

    [78] Chu C, Liu S, Liu Z, et al. Spectral polarization camera based on ghost imaging via sparsity constraints[J]. Applied Optics, 60, 4632-4638(2021).

    [79] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X-rays[J]. Physical Review Letters, 117, 113901(2016).

    [80] Pelliccia D, Rack A, Scheel M, et al. Experimental X-Ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [81] Li W, Tong Z, Xiao K, et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019).

    [82] Jin X, Wang X Y, Du D Y, et al. Progress and prospect of scattering imaging[J]. Laser and Optoelectronics Progress, 58, 1811002(2021).

    [83] Faccio D, Velten A, Wetzstein G. Non-line-of-sight imaging[J]. Nature Reviews Physics, 2, 318-327(2020).

    [84] [84] Mel L, Wolf E. Optical Coherence Quantum Optics[M]. UK: Cambridge University Press, 1995: 4165.

    [85] Zernike F. How I discovered phase contrast[J]. Science, 121, 345-349(1955).

    [86] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [87] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197, 454-487(1949).

    [88] Miao J, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [89] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 177, 27-29(1956).

    [90] Zhang M, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 75, 021803(2007).

    [91] Gong W, Han S. Phase-retrieval ghost imaging of complex-valued objects[J]. Physical Review A, 82, 023828(2010).

    [92] Zhang D J, Tang Q, Wu T F, et al. Lensless ghost imaging of a phase object with pseudo-thermal light[J]. Applied Physics Letters, 104, 121113(2014).

    [93] Song X B, Xu D Q, Wang H B, et al. Experimental observation of one-dimensional quantum holographic imaging[J]. Applied Physics Letters, 103, 131111(2013).

    [94] Mandel L, Sudarshan E C G, Wolf E. Theory of photoelectric detection of light fluctuations[J]. Proceedings of the Physical Society, 84, 435(1964).

    [95] [95] Mel L, Wolf E. Optical Coherence Quantum Optics[M]. UK: Cambridge University Press, 1995: 438464.

    [96] Kolaczyk E D, Nowak R D. Multiscale likelihood analysis and complexity penalized estimation[J]. The Annals of Statistics, 32, 500-527(2004).

    [97] Makitalo M, Foi A. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising[J]. IEEE Transactions on Image Processing, 20, 99-109(2010).

    [98] Han S, Yu H, Shen X, et al. A review of ghost imaging via sparsity constraints[J]. Applied Sciences, 8, 1379(2018).

    [99] Pan L, Wang Y, Deng C, et al. Micro-Doppler effect based vibrating object imaging of coherent detection GISC lidar[J]. Optics Express, 29, 43022-43031(2021).

    [100] Gong W L, Sun J F, Deng C J, et al. Research progress on single-pixel imaging Lidar via coherent detection[J]. Laser & Optoelectronics Progress, 58, 1011003(2021).

    [101] Giglio M, Carpineti M, Vailati A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function \begin{document}$g\left( r \right)$\end{document}[J]. Physical Review Letters, 85, 1416-1419(2000).

    [102] Cerbino R, Peverini L, Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics, 4, 238-243(2008).

    [103] Tan Z, Yu H, Lu R, et al. Non-locally coded Fourier-transform ghost imaging[J]. Optics Express, 27, 2937-2948(2019).

    [104] Zhu R, Yu H, Lu R, et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints[J]. Optics Express, 26, 2181-2190(2018).

    [105] Hu C, Zhu R, Yu H, et al. Correspondence Fourier-transform ghost imaging[J]. Physical Review A, 103, 043717(2021).

    [106] [106] Compressed Sensing: They Applications[M]. UK: Cambridge University Press, 2012.

    [107] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [108] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 51, 4203-4215(2005).

    [109] Li E R, Chen M L, Gong W L, et al. Mutual information of ghost imaging systems[J]. Acta Optica Sinica, 33, 1211003(2013).

    [110] Xu X, Li E, Shen X, et al. Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization[J]. Chinese Optics Letters, 13, 071101(2015).

    [111] Czajkowski K M, Pastuszczak A, Kotyński R. Single-pixel imaging with Morlet wavelet correlated random patterns[J]. Scientific Reports, 8, 1-8(2018).

    [112] Hu C, Tong Z, Liu Z, et al. Optimization of light fields in ghost imaging using dictionary learning[J]. Optics Express, 27, 28734-28749(2019).

    [113] Liu B, Wang F, Chen C, et al. Self-evolving ghost imaging[J]. Optica, 8, 1340-1349(2021).

    [114] Tong Z, Liu Z, Wang J, et al. Spatial resolution limit of ghost imaging camera via sparsity constraints-break rayleigh's criterion based on the discernibility in high-dimensional light field space[J]. arXiv e-prints, arXiv, 2004.00135(2020).

    [115] Tropp J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Transactions on InformationTheory, 50, 2231-2242(2004).

    [116] Tong Z, Liu Z, Hu C, et al. Preconditioned deconvolution method for high-resolution ghost imaging[J]. Photonics Research, 9, 1069-1077(2021).

    [117] Chen H, Shi J, Liu X, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition[J]. Optics Communications, 413, 269-275(2018).

    [118] Zhai X, Cheng Z, Wei Y, et al. Compressive sensing ghost imaging object detection using generative adversarial networks[J]. Optical Engineering, 58, 013108(2019).

    [119] Li Y, Shi J, Sun L, et al. Single-pixel salient object detection via discrete cosine spectrum acquisition and deep learning[J]. IEEE Photonics Technology Letters, 32, 1381-1384(2020).

    [120] Zhang Z, Li X, Zheng S, et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 28, 13269-13278(2020).

    [121] Cao J N, Zuo Y H, Wang H H, et al. Single-pixel neural network object classification of sub-Nyquist ghost imaging[J]. Applied Optics, 60, 9180-9187(2021).

    [122] Liu X F, Yao X R, Lan R M, et al. Edge detection based on gradient ghost imaging[J]. Optics Express, 23, 33802-33811(2015).

    [123] Wang L, Zou L, Zhao S. Edge detection based on subpixel-speckle-shifting ghost imaging[J]. Optics Communications, 407, 181-185(2018).

    [124] Sun S, Gu J H, Lin H Z, et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019).

    [125] Yang D, Chang C, Wu G, et al. Compressive ghost imaging of the moving object using the low-order moments[J]. Applied Sciences, 10, 7941(2020).

    [126] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).

    [127] Rivenson Y, Wu Y, Ozcan A. Deep learning in holography and coherent imaging[J]. Light: Science & Applications, 8, 1-8(2019).

    CLP Journals

    [1] Zhiyuan Wang, Xuetian Lai, Huichuan Lin, Fuchang Chen, Jun Zeng, Ziyang Chen, Jixiong Pu. Deep learning-based image reconstruction through turbid medium (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220215

    Tools

    Get Citation

    Copy Citation Text

    Shensheng Han, Chenyu Hu. Review, current status and prospect of researches on information optical imaging (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20220017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Highlight

    Received: Nov. 10, 2021

    Accepted: --

    Published Online: Mar. 8, 2022

    The Author Email:

    DOI:10.3788/IRLA20220017

    Topics