Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2410011(2021)

Image Super-Resolution Reconstruction Based on Multi-Scale Residual Aggregation Feature Network

Lifeng He1,2, Liangliang Su1、*, Guangbin Zhou1, Pu Yuan1, Bofan Lu1, and Jiajia Yu1
Author Affiliations
  • 1School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China;
  • 2School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi 480- 1198, Japan
  • show less
    Figures & Tables(12)
    Structure of multi-scale residual aggregation feature network
    Multi-scale feature extraction module
    Extended convolution kernel with different expansion coefficients
    Comparison of different module structures. (a) Ordinary residual block; (b) hybrid extended convolution residual block
    Gridding artifact with a single pixel convolved with a 3×3 extended convolutional kernel (expansion coefficient r=2)
    Diagram of visual feature output. (a) RGB image; (b) without per-pixel addition operation; (c) with per-pixel addition operation
    Reconstruction results of the three models in the Urban100 image “img091”. (a) Original drawing; (b) M_HERB; (c) M_RB+AM; (d) M_HERB+AM
    Comparison of image reconstruction effects under various methods
    • Table 1. Relationship between number of hybrid extended convolution residual blocks, average time, and PSNR

      View table

      Table 1. Relationship between number of hybrid extended convolution residual blocks, average time, and PSNR

      N2234567891011
      PSNR /dB28.33528.39828.42828.44428.46328.49028.52228.53228.50728.506
      Average time /s0.1070.1380.1760.1950.2160.2350.2540.2770.2990.320
    • Table 2. Relationship between number of multi-scale feature extraction modules, average time , and PSNR

      View table

      Table 2. Relationship between number of multi-scale feature extraction modules, average time , and PSNR

      N11234
      PSNR /dB28.43128.52228.52728.533
      Average time /s0.1710.2540.3410.438
    • Table 3. Average PSNR/SSIM of three models on 5 data sets PSNR unit: dB

      View table

      Table 3. Average PSNR/SSIM of three models on 5 data sets PSNR unit: dB

      Data setM_HERBM_RB+AMM_HERB+AM
      Set532.11/0.893832.01/0.893032.03/0.8933
      Set1428.49/0.779728.41/0.775628.52/0.7805
      BSD10027.53/0.735127.45/0.731227.57/0.7361
      Manga10930.17/0.905530.10/0.901130.30/0.9072
      UrBan10025.85/0.779225.77/0.778925.99/0.7846
    • Table 4. Average PSNR/SSIM of different methods on different test sets PSNR unit: dB

      View table

      Table 4. Average PSNR/SSIM of different methods on different test sets PSNR unit: dB

      Methodr'Set5Set14BSD100Manga109UrBan100
      Bicubic233.66/0.929930.24/0.868829.56/0.843130.80/0.933926.88/0.8403
      SRCNN[4]236.66/0.954232.45/0.906731.36/0.887935.60/0.966329.50/0.8946
      VDSR[8]237.53/0.959033.05/0.913031.90/0.896037.22/0.975030.77/0.9140
      DRRN[10]237.74/0.959133.23/0.913632.05/0.897337.60/0.973631.23/0.9188
      SRMDNF[26]237.79/0.960133.32/0.915932.05/0.898538.07/0.976131.33/0.9204
      IMRSR[12]237.78/0.964333.26/0.848832.00/0.907331.00/0.9235
      Proposed method237.89/0.960333.41/0.915932.07/0.898638.24/0.976331.62/0.9237
      Bicubic330.39/0.868227.55/0.774227.21/0.738526.95/0.855624.46/0.7349
      SRCNN[4]332.75/0.909029.30/0.821528.41/0.786330.48/0.911726.24/0.7989
      VDSR[8]333.67/0.921029.78/0.832028.83/0.799032.01/0.934027.14/0.8290
      DRRN[10]334.03/0.924429.96/0.834928.95/0.800432.42/0.935927.53/0.8378
      SRMDNF[26]334.12/0.925430.04/0.838228.97/0.802533.00/0.940327.57/0.8398
      IMRSR[12]333.91/0.931229.88/0.848828.80/0.816627.00/0.8403
      Proposed method334.18/0.925530.16/0.838928.99/0.803333.01/0.941327.77/0.8450
      Methodr'Set5Set14BSD100Manga109UrBan100
      Bicubic428.42/0.810426.00/0.702725.96/0.667524.89/0.786623.14/0.6577
      SRCNN[4]430.48/0.862827.50/0.751326.90/0.710127.58/0.855524.52/0.7221
      VDSR[8]431.35/0.883028.02/0.768027.29/0.772628.83/0.887025.18/0.7540
      DRRN[10]431.68/0.888828.21/0.772127.38/0.728429.18/0.891425.44/0.7638
      SRMDNF[26]431.96/0.892528.35/0.778727.49/0.733730.09/0.902425.68/0.7731
      IMRSR[12]431.59/0.895728.19/0.789227.30/0.746925.15/0.7714
      Proposed method432.03/0.893328.52/0.780527.57/0.736130.30/0.907225.99/0.7846
    Tools

    Get Citation

    Copy Citation Text

    Lifeng He, Liangliang Su, Guangbin Zhou, Pu Yuan, Bofan Lu, Jiajia Yu. Image Super-Resolution Reconstruction Based on Multi-Scale Residual Aggregation Feature Network[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2410011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 7, 2021

    Accepted: May. 18, 2021

    Published Online: Nov. 29, 2021

    The Author Email: Liangliang Su (1211516382@qq.com)

    DOI:10.3788/LOP202158.2410011

    Topics