Opto-Electronic Engineering, Volume. 52, Issue 5, 250016(2025)

Integrating hierarchical semantic networks with physical models for MRI reconstruction

Xiaomin Zhang1 and Lingxin Bao2、*
Author Affiliations
  • 1The Internet of Things and Artificial Intelligence College, Fujian Polytechnic of Information Technology, Fuzhou, Fujian 350003, China
  • 2College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
  • show less
    Figures & Tables(10)
    Schematic diagram of algorithm process
    Network composition module. (a) Multi-scale aggregation module; (b) Context extraction module
    Schematic diagram of semantic graph reasoning module
    Schematic diagram of dual-scale attention module
    Reconstruction results using random masking for 8× acceleration on the IXI dataset
    Validation loss using random masking for 4-fold and 8-fold acceleration on IXI dataset
    • Table 1. Numerical results under three kinds of masks: radial, random and equidistant, and acceleration rates of 4× and 8×

      View table
      View in Article

      Table 1. Numerical results under three kinds of masks: radial, random and equidistant, and acceleration rates of 4× and 8×

      DatasetRatioMaskMetricU-NetMICCANMDUNetGA-HQSH-DSLRPGIUNOurs
      IXI RadialPSNR34.04 41.62 45.87 45.28 45.30 47.08 48.15
      SSIM 0.971 0.990 0.992 0.993 0.993 0.9950.996
      RandomPSNR31.18 35.42 37.45 37.07 35.98 37.97 39.12
      SSIM 0.953 0.972 0.978 0.980 0.981 0.9840.989
      EquispacedPSNR30.12 33.48 34.96 35.46 33.63 35.50 35.65
      SSIM 0.944 0.964 0.968 0.977 0.965 0.9770.978
      RadialPSNR29.74 32.82 35.48 34.13 34.50 36.26 36.42
      SSIM0.934 0.958 0.977 0.968 0.971 0.9800.981
      RandomPSNR29.05 31.68 34.02 33.58 31.96 34.07 34.11
      SSIM 0.931 0.949 0.959 0.962 0.955 0.9640.968
      EquispacedPSNR27.90 29.98 31.33 31.29 29.80 31.63 31.75
      SSIM 0.921 0.939 0.951 0.940 0.938 0.9430.953
      fastMRIRadialPSNR28.59 30.11 30.18 30.82 30.22 30.96 31.09
      SSIM 0.828 0.861 0.879 0.873 0.865 0.8730.881
      RandomPSNR27.86 29.03 30.09 39.98 29.01 30.01 30.15
      SSIM 0.810 0.830 0.843 0.848 0.831 0.8490.851
      EquispacedPSNR27.16 28.11 28.53 28.51 28.23 28.53 28.62
      SSIM 0.779 0.795 0.809 0.807 0.786 0.8030.826
      RadialPSNR26.42 27.41 28.01 27.91 27.28 28.01 28.16
      SSIM 0.723 0.745 0.764 0.789 0.741 0.7910.816
      RandomPSNR26.38 27.26 27.65 27.79 27.04 27.75 27.81
      SSIM 0.754 0.771 0.739 0.781 0.762 0.7920.803
      EquispacedPSNR26.21 26.96 27.31 27.33 26.84 27.29 27.34
      SSIM 0.743 0.745 0.747 0.767 0.752 0.7680.783
    • Table 2. Computational complexity and runtime analysis results

      View table
      View in Article

      Table 2. Computational complexity and runtime analysis results

      MethodParams./MFlops/GInference/ms
      U-Net7.75611.221
      MICCAN2.62236.634
      MDUNet1.80090.749
      GA-HQS6.100120.263
      H-DSLR1.65085.344
      PGIUN1.25074.853
      Ours1.53086.357
    • Table 3. Multi-coil reconstruction contrast results

      View table
      View in Article

      Table 3. Multi-coil reconstruction contrast results

      RatioMaskMethodPSNR/dBSSIMNRMSE
      4×EquispacedU-Net25.780.8770.763
      H-DSLR31.540.9420.212
      MoDL29.120.9190.304
      PGIUN30.010.9260.307
      Ours32.700.9580.190
      6×RandomU-Net32.350.9460.222
      H-DSLR40.840.9860.073
      MoDL39.630.9770.081
      PGIUN38.500.9760.095
      Ours41.350.9900.062
    • Table 4. Module ablation experiment results

      View table
      View in Article

      Table 4. Module ablation experiment results

      No.Contextual extractionMultiscale aggregationSemantic graph reasoningDual-scale attentionIXIComplexity
      PSNR/dBSSIMParam./MFLOPs/G
      130.010.9014.2055.30
      230.250.9125.1066.12
      331.100.9216.5072.45
      431.950.9316.8080.32
      532.500.9407.1585.20
      633.750.9507.8595.00
      735.650.9768.17102.12
    Tools

    Get Citation

    Copy Citation Text

    Xiaomin Zhang, Lingxin Bao. Integrating hierarchical semantic networks with physical models for MRI reconstruction[J]. Opto-Electronic Engineering, 2025, 52(5): 250016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jan. 20, 2025

    Accepted: Mar. 12, 2025

    Published Online: Jul. 18, 2025

    The Author Email: Lingxin Bao (鲍玲鑫)

    DOI:10.12086/oee.2025.250016

    Topics