Infrared and Laser Engineering, Volume. 51, Issue 5, 20220381(2022)

Progress in integrated electro-optic frequency combs (Invited)

Pengfei Liu1, Linhao Ren1, Hao Wen1, Lei Shi1,2, and Xinliang Zhang1,2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Optics Valley Laboratory, Wuhan 430074, China
  • show less
    References(116)

    [1] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [2] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).

    [3] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).

    [4] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).

    [5] Hargrove L E, Fork R L, Pollack M A. Locking of He-Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 5, 4(1964).

    [6] Hall J L. Nobel lecture: Defining and measuring optical frequencies[J]. Reviews of Modern Physics, 78, 1279-1295(2006).

    [7] Hänsch T W. Nobel lecture: Passion for precision[J]. Reviews of Modern Physics, 78, 1297-1309(2006).

    [8] Diddams S A. The evolving optical frequency comb [invited][J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [9] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [10] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).

    [11] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [12] Ycas G, Giorgetta F R, Baumann E, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm[J]. Nature Photonics, 12, 202-208(2018).

    [13] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).

    [14] Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy[J]. Nature Photonics, 10, 27-30(2016).

    [15] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 354, 600-603(2016).

    [16] Yasui T, Yokoyama S, Inaba H, et al. Terahertz frequency metrology based on frequency comb[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 191-201(2011).

    [17] Ye J, Schnatz H, Hollberg L W. Optical frequency combs: From frequency metrology to optical phase control[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1041-1058(2003).

    [18] Yoshii K, Nomura J, Taguchi K, et al. Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation[J]. Physical Review Applied, 11, 054031(2019).

    [19] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).

    [20] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [21] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).

    [22] Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source[J]. Nature Communications, 11, 7(2020).

    [23] Hu H, Oxenlowe L K. Chip-based optical frequency combs for high-capacity optical communications[J]. Nanophotonics, 10, 1367-1385(2021).

    [24] Liu J Q, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 14, 486-491(2020).

    [25] Rieker G B, Giorgetta F R, Swann W C, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths[J]. Optica, 1, 290-298(2014).

    [26] Zhao S X, Liu Q W, He Z Y. Multi-tone Pound-Drever-Hall technique for high-resolution multiplexed Fabry-Perot resonator sensors[J]. Journal of Lightwave Technology, 38, 6379-6384(2020).

    [27] Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 12, 209-214(2018).

    [28] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 153(2019).

    [29] Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs[J]. Nature Photonics, 13, 170-179(2019).

    [30] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications[J]. Advances in Optics and Photonics, 8, 465-540(2016).

    [31] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2013).

    [32] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).

    [33] Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator[J]. Nature, 562, 401-405(2018).

    [34] Cole D C, Lamb E S, Del'Haye P, et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 11, 671-676(2017).

    [35] Sich M, Krizhanovskii D N, Skolnick M S, et al. Observation of bright polariton solitons in a semiconductor microcavity[J]. Nature Photonics, 6, 50-55(2012).

    [36] Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).

    [37] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 6, 480-487(2012).

    [38] Godey C, Balakireva I V, Coillet A, et al. Stability analysis of the spatiotemporal lugiato-lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes[J]. Physical Review A, 89, 063814(2014).

    [39] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation[J]. Advanced Photonics, 2, 034001(2020).

    [40] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).

    [41] Lundberg L, Karlsson M, Lorences-Riesgo A, et al. Frequency comb-based WDM transmission systems enabling joint signal processing[J]. Applied Sciences, 8, 718(2018).

    [42] Rueda A, Sedlmeir F, Kumari M, et al. Resonant electro-optic frequency comb[J]. Nature, 568, 378-381(2019).

    [43] Chang L, Liu S, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).

    [44] Buscaino B, Zhang M, Loncar M, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators[J]. Journal of Lightwave Technology, 38, 1400-1413(2020).

    [45] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [46] Xu M Y, He M B, Zhu Y T, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators[J]. Journal of Lightwave Technology, 40, 339-345(2022).

    [47] Ren T H, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 31, 889-892(2019).

    [48] Andriolli N, Cassese T, Chiesa M, et al. Photonic integrated fully tunable comb generator cascading optical modulators[J]. Journal of Lightwave Technology, 36, 5685-5689(2018).

    [49] Slavik R, Farwell S G, Wale M J, et al. Compact optical comb generator using InP tunable laser and push-pull modulator[J]. IEEE Photonics Technology Letters, 27, 217-220(2015).

    [50] Yokota N, Yasaka H. Operation strategy of InP Mach-Zehnder modulators for flat optical frequency comb generation[J]. IEEE Journal of Quantum Electronics, 52, 1-7(2016).

    [51] Nagarjun K P, Jeyaselvan V, Selvaraja S K, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators[J]. Opt Express, 26, 10744-10753(2018).

    [52] Nagarjun K P, Raj P, Jeyaselvan V, et al. Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs[J]. Opt Express, 28, 13032-13042(2020).

    [53] Liu S, Wu K, Zhou L, et al. Repetition-frequency-doubled transform-limited optical pulse generation based on silicon modulators[J]. Journal of Lightwave Technology, 38, 6299-6311(2020).

    [54] Pockels F. Ueber den einfluss elastischer deformationen, speciell einseitigen druckes, auf das optische verhalten krystallinischer körper[J]. Annalen der Physik, 273, 144-172(1889).

    [55] Parriaux A, Hammani K, Millot G. Electro-optic frequency combs[J]. Advances in Optics and Photonics, 12, 223-287(2020).

    [56] Imran M, Anandarajah P M, Kaszubowska-Anandarajah A, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks[J]. IEEE Communications Surveys & Tutorials, 20, 211-263(2018).

    [57] Pile B, Taylor G. Small-signal analysis of microring resonator modulators[J]. Optics Express, 22, 14913-14928(2014).

    [58] Sacher W D, Green W M J, Gill D M, et al. Binary phase-shift keying by coupling modulation of microrings[J]. Optics Express, 22, 20252-20259(2014).

    [59] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).

    [60] Kourogi M, Nakagawa K, Ohtsu M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement[J]. IEEE Journal of Quantum Electronics, 29, 2693-2701(1993).

    [61] Brothers L R, Wong N C. Dispersion compensation for terahertz optical frequency comb generation[J]. Optics Letters, 22, 1015-1017(1997).

    [62] Bruel M. Silicon on insulator material technology[J]. Electronics Letters, 31, 1201-1202(1995).

    [63] Levy M, Osgood R M, Liu R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 73, 2293-2295(1998).

    [64] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 6, 488-503(2012).

    [65] Lin J, Bo F, Cheng Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1936(2020).

    [66] Zhu D, Shao L B, Yu M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).

    [67] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019).

    [68] Xu M, He M, Zhu Y, et al. Integrated thin film lithium niobate Fabry–Perot modulator [invited][J]. Chinese Optics Letters, 19, 060003(2021).

    [69] He J, Li Y. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR[J]. Opt Express, 28, 30771-30783(2020).

    [70] Zafar F, Iqbal A. Indium phosphide nanowires and their applications in optoelectronic devices[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 472, 18(2016).

    [71] Tol van der J J G M, Jiao Y, Shen L, et al. Indium phosphide integrated photonics in membranes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-9(2018).

    [72] Wang Z, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon[J]. Nature Photonics, 9, 837-842(2015).

    [73] Shen L, Jiao Y, Yao W, et al. High-Bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform[J]. Optics Express, 24, 8290-8301(2016).

    [74] Xue Y, Han Y, Tong Y, et al. High-performance III-V photodetectors on a monolithic InP/SOI platform[J]. Optica, 8, 1204-1209(2021).

    [75] Nguyen N L K, Nguyen D P, Stameroff A N, et al. A 1-160-GHz InP distributed amplifier using 3-D interdigital capacitors[J]. IEEE Microwave and Wireless Components Letters, 30, 492-495(2020).

    [76] Liu T, Pagliano F, van Veldhoven R, et al. Low-voltage MEMS optical phase modulators and switches on a indium phosphide membrane on silicon[J]. Applied Physics Letters, 115, 251104(2019).

    [77] Kashi A A, Tol van der J J G M, Williams K A, et al. Electro-optic slot waveguide phase modulator on the InP membrane on silicon platform[J]. IEEE Journal of Quantum Electronics, 57, 1-10(2021).

    [78] Betancur-Perez A, Martin-Mateos P, Dios C, et al. Design of a multipurpose photonic chip architecture for THz Dual-Comb spectrometers[J]. Sensors, 20, 6089(2020).

    [79] Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator[J]. Journal of Semiconductors, 42, 082301(2021).

    [80] Bontempi F, Andriolli N, Scotti F, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-7(2019).

    [81] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [82] Bruel M, Aspar B, Auberton-Herve A J. Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 36, 1636-1641(1997).

    [83] Aspar B, Moriceau H, Jalaguier E, et al. The generic nature of the smart-cut® process for thin film transfer[J]. Journal of Electronic Materials, 30, 834-840(2001).

    [84] Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics[J]. Journal of Optics, 18, 073003(2016).

    [85] Bogaerts W, Chrostowski L. Silicon photonics circuit design: Methods, tools and challenges[J]. Laser & Photonics Reviews, 12, 1700237(2018).

    [86] Arakawa Y, Nakamura T, Urino Y, et al. Silicon photonics for next generation system integration platform[J]. IEEE Communications Magazine, 51, 72-77(2013).

    [87] Marchetti R, Lacava C, Carroll L, et al. Coupling strategies for silicon photonics integrated chips [invited][J]. Photonics Research, 7, 201-239(2019).

    [88] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: A perspective[J]. Nanophotonics, 7, 393-420(2018).

    [89] Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology, 39, 4374-4389(2021).

    [90] Lee C H, Chang R K, Bloembergen N. Nonlinear electroreflectance in silicon and silver[J]. Physical Review Letters, 18, 167-170(1967).

    [91] Chen Z, Zhao J, Zhang Y, et al. Pockel’s effect and optical rectification in (111)-cut near-intrinsic silicon crystals[J]. Applied Physics Letters, 92, 251111(2008).

    [92] Wu X, Xu K, Zhou W, et al. Scalable ultra-wideband pulse generation based on silicon photonic integrated circuits[J]. IEEE Photonics Technology Letters, 29, 1896-1899(2017).

    [93] Deniel L, Weckenmann E, Pérez Galacho D, et al. Silicon photonics phase and intensity modulators for flat frequency comb generation[J]. Photonics Research, 9, 2068-2076(2021).

    [94] Wang Z, Ma M, Sun H, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators[J]. IEEE Journal of Quantum Electronics, 55, 1-6(2019).

    [95] Lipson M. Compact electro-optic modulators on a silicon chip[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1520-1526(2006).

    [96] Xu Y, Lin J, Dube-Demers R, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators[J]. Opt Lett, 43, 1554-1557(2018).

    [97] Liu S, Wu K, Zhou L, et al. Microwave pulse generation with a silicon Dual-Parallel modulator[J]. Journal of Lightwave Technology, 38, 2134-2143(2020).

    [98] Deniel L, Weckenmann E, Pérez Galacho D, et al. Frequency-tuning dual-comb spectroscopy using silicon mach-zehnder modulators[J]. Optics Express, 28, 10888-10898(2020).

    [99] Demirtzioglou I, Lacava C, Bottrill K R H, et al. Frequency comb generation in a silicon ring resonator modulator[J]. Opt Express, 26, 790-796(2018).

    [100] [100] Khalil M, Maram R, Naghdi B, et al. Electrooptic frequency comb generation using caded silicon micring modulats [C] Proceedings of the OSA Advanced Photonics Congress (AP), 2020.

    [101] Kowligy A S, Carlson D R, Hickstein D D, et al. Mid-infrared frequency combs at 10 GHz[J]. Opt Lett, 45, 3677-3680(2020).

    [102] Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission[J]. Opt Express, 22, 3629-3637(2014).

    [103] Jiang P, Balram K C. Suspended gallium arsenide platform for building large scale photonic integrated circuits: Passive devices[J]. Opt Express, 28, 12262-12271(2020).

    [104] Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources[J]. Physics Reports, 729, 1-81(2018).

    [105] Roslund J, de Araújo R M, Jiang S, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs[J]. Nature Photonics, 8, 109-112(2014).

    [106] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs[J]. Nature Photonics, 8, 375-380(2014).

    [107] Pfeifle J, Vujicic V, Watts R T, et al. Flexible terabit/s nyquist-wdm super-channels using a gain-switched comb source[J]. Optics Express, 23, 724-738(2015).

    [108] Doi M, Sugiyama M, Tanaka K, et al. Advanced LiNbO3 optical modulators for broadband optical communications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 745-750(2006).

    [109] Li X, Wang M, Li J, et al. Monolithic 1×4 reconfigurable electro-optic tunable interleaver in lithium niobate thin film[J]. IEEE Photonics Technology Letters, 31, 1611-1614(2019).

    [110] Dupuis N, Doerr C R, Zhang L M, et al. InP-based comb generator for optical OFDM[J]. Journal of Lightwave Technology, 30, 466-472(2012).

    [111] Lin J C, Sepehrian H, Xu Y L, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks[J]. IEEE Photonics Technology Letters, 30, 1495-1498(2018).

    [112] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 482, 68-71(2012).

    [113] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 5, 3375(2014).

    [114] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy[J]. Science Advances, 4, e1701858(2018).

    [115] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Commu-nications, 9, 1869(2018).

    [116] Shams-Ansari A, Yu M, Chen Z, et al. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy[J]. Communications Physics, 5, 88(2022).

    CLP Journals

    [1] Yaohu Cui, Zixiong Wang, Yitong Xu, Xunhe Zuo, Yang Jiang, Jinlong Yu, Zhanhua Huang. Approach to generation of flat optical frequency comb using cascaded phase modulator and intensity modulator[J]. Infrared and Laser Engineering, 2023, 52(5): 20220756

    Tools

    Get Citation

    Copy Citation Text

    Pengfei Liu, Linhao Ren, Hao Wen, Lei Shi, Xinliang Zhang. Progress in integrated electro-optic frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220381

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Microcavity optical frequency comb technology

    Received: Apr. 28, 2022

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email:

    DOI:10.3788/IRLA20220381

    Topics