Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1812001(2024)

Pantograph Safe Trigger Target Real-Time Detection and Localization Method Based on Fused Differential Convolutional

Zhanshan Yang, Ying Zhang, Hongzhi Du, Yanbiao Sun*, and Jigui Zhu
Author Affiliations
  • State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(17)
    Schematic diagram of detection system
    Proposed lightweight detection framework
    Feature map visualization. (a) Prediction results of RepGhost network; (b) prediction results of proposed model
    Difference convolution. (a) Sampling and weighted aggregation; (b) difference convolution
    Proposed module (RPCDC_Bolck). (a) Before re-parameterization; (b) after re-parameterization
    Re-parameterization flow. (a) Initial structure; (b) fusion of dconv2 and BN2; (c) fusion of 1×1 cv1 and δ; (d) fusion of add and BN1; (e) fusion of dconv1 and BN1; (f) fusion of dconv1, dconv2, and BN3
    Shared feature fusion module
    Proposed Anchor Free detecting head
    Pantograph trigger detection effect images of roof perspective. (a) Detection effect 1; (b) detection effect 2; (c) detection effect 3
    Pantograph trigger detection effect images of oblique side viewing angle. (a) Detection effect 1; (b) detection effect 2
    • Table 1. Effect of activation function on model performance

      View table

      Table 1. Effect of activation function on model performance

      Activation functionParameter
      Top1 /%Latency time /ms
      ReLU55.0867.06
      ReLU655.3867.28
      LeakyReLU56.5567.21
      Hardswish53.1067.19
      SiLU55.0967.14
    • Table 2. Multi-stage training strategy

      View table

      Table 2. Multi-stage training strategy

      TypeStage
      S1S2S3S4
      Pre-trainedRandomS1 BestS2 BestS3 Best
      RandomFlip
      Normalize
      RandomScale
      ElasticTransform
      Blur
      AddNoise
      Mosaic
      MixUp
    • Table 3. Distribution of large, medium, and small targets in VOC0712 dataset

      View table

      Table 3. Distribution of large, medium, and small targets in VOC0712 dataset

      TypePixel rangeVoc0712_training setVoc0712_validation setVoc07_testing set
      Small(0<a≤32)pixel×32 pixel438942372741
      Medium32 pixel×32 pixel—(0<a≤96)pixel×96 pixel795980655483
      Large96 pixel×(96≤a)pixel11270113036752
      Total0<a236182360514976
    • Table 4. Experimental results of VOC0712 dataset and PANTOGRAPH dataset

      View table

      Table 4. Experimental results of VOC0712 dataset and PANTOGRAPH dataset

      DatasetMethodNumber of parameters /103FLOP/106AP50 /%FPS /(frame/s)mAP /%mAPs /%mAPm /%mAPl /%
      VOC0712YOLOX2070.3990.1630.6013.603.005.1016.60
      NanoDet Plus69.6038.4420.784.028.0725.48
      FemtoDet68.7790.1646.319022.901.108.4028.50
      Proposed140.3079.8255.7014431.301.3012.0038.60
      PANTOGRAPHFemtoDet68.7790.1697.409275.2075.20
      Proposed140.3079.8297.5014981.2081.20
    • Table 5. Comparison of Neck detection performnce

      View table

      Table 5. Comparison of Neck detection performnce

      NeckNumber of parameters /103AP50 /%FPS /(frame/s)
      FPN176.3145.0481
      PAN79.8139.9175
      FemtoDet68.7742.50100
      Proposed87.6543.6195
    • Table 6. Ablation experimental results

      View table

      Table 6. Ablation experimental results

      MethodNumber of parameters /103FLOP /106

      AP50 /

      %

      FPS /

      (frame/s)

      BaseBackeboneShareneckAnchor freeRe-parameterization
      ××××68.790.1646.3190
      ×××124.685.7452.26124
      ××124.685.7452.26135
      ×130.983.3354.57139
      140.379.8255.73144
    • Table 7. Multi-stage training effects

      View table

      Table 7. Multi-stage training effects

      Task IDStageNumber of parameters /103FPS /(frame/s)mAP50 /%
      S1S2S3S4
      1×××140.314445.40
      2××140.314452.10
      3×140.314454.30
      4140.314455.70
    Tools

    Get Citation

    Copy Citation Text

    Zhanshan Yang, Ying Zhang, Hongzhi Du, Yanbiao Sun, Jigui Zhu. Pantograph Safe Trigger Target Real-Time Detection and Localization Method Based on Fused Differential Convolutional[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1812001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 11, 2023

    Accepted: Jan. 15, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Yanbiao Sun (Yanbiao.sun@tju.edu.cn)

    DOI:10.3788/LOP232644

    CSTR:32186.14.LOP232644

    Topics