Acta Photonica Sinica, Volume. 52, Issue 11, 1113001(2023)
Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)
[1] SOREF R. Silicon photonics: a review of recent literature[J]. Silicon, 2, 1-6(2010).
[2] SU Yikai, HE Yu, GUO Xuhan et al. Scalability of large-scale photonic integrated circuits[J]. ACS Photonics, 10, 2020-2030(2023).
[3] ZHANG Yong, HE Yu, ZHU Qingming et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range[J]. Optics Letters, 43, 4518-4521(2018).
[4] TU Luqi, CAO Rongrong, WANG Xudong et al. Ultrasensitive negative capacitance phototransistors[J]. Nature Communications, 11, 101(2020).
[5] ABEL S, STOFERLE T, MARCHIORI C et al. A hybrid barium titanate-silicon photonics platform for ultraefficient electro-optic tuning[J]. Journal of Lightwave Technology, 34, 1688-1693(2016).
[6] JUNG H, TANG H X. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion[J]. Nanophotonics, 5, 263-271(2016).
[7] ALEXANDER K, GEORGE J P, VERBIST J et al. Nanophotonic Pockels modulators on a silicon nitride platform[J]. Nature Communications, 9, 3444(2018).
[8] SHEN Jian, FAN Yuyan, XU Zihan et al. Ultralow-power piezo-optomechanically tuning on CMOS-compatible integrated silicon-hafnium-oxide platform[J]. Laser & Photonics Reviews, 17, 202200248(2022).
[9] SOHN D B, ÖRSEL O E, BAHL G. Electrically driven optical isolation through phonon-mediated photonic Autler-Townes splitting[J]. Nature Photonics, 15, 822-827(2021).
[10] DONG M, CLARK G, LEENHEER A J et al. High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture[J]. Nature Photonics, 16, 59-65(2021).
[11] ADAM T, KOLODZEY J, SWANN C et al. The electrical properties of MIS capacitors with AlN gate dielectrics[J]. The 10th International Conference on Solid Films and Surfaces, 175, 428-435(2001).
[12] MOKHOV E, AVDEEV O, BARASH I et al. Sublimation growth of AlN bulk crystals in Ta crucibles[J]. Journal of Crystal Growth, 281, 93-100(2005).
[13] MORITA M, UESUGI N, ISOGAI S et al. Epitaxial growth of aluminum nitride on sapphire using metalorganic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 20, 17(1981).
[14] HE Maoqi, CHENG Naiqun, ZHOU Peizhen et al. Preparation of nearly oxygen-free AlN thin films by pulsed laser deposition[J]. Journal of Vacuum Science & Technology A, 16, 2372-2375(1998).
[15] XIONG Chi, PERNICE W H, SUN Xiankai et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics[J]. New Journal of Physics, 14, 095014(2012).
[16] STEGMAIER M, EBERT J, MECKBACH J et al. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths[J]. Applied Physcis Letters, 104, 091108(2014).
[17] SURYA J B, GUO Xiang, ZOU Changlin et al. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings[J]. Optica, 5, 103-108(2018).
[18] TERRASANTA G, MÜLLER M, SOMMER T et al. Growth of aluminum nitride on a silicon nitride substrate for hybrid photonic circuits[J]. Materials for Quantum Technology, 1, 021002(2021).
[19] IRIARTE G, REYES D, GONZÁLEZ D et al. Influence of substrate crystallography on the room temperature synthesis of AlN thin films by reactive sputtering[J]. Applied Surface Science, 257, 9306-9313(2011).
[20] LU T J, FANTO M, CHOI H et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum[J]. Optics Express, 26, 11147-11160(2018).
[21] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R et al. Trapped-ion quantum computing: progress and challenges[J]. Applied Physcis Reviews, 6, 021314(2019).
[22] CHEN Yiren, SONG Hang, LI Dabing et al. Influence of the growth temperature of AlN nucleation layer on AlN template grown by high-temperature MOCVD[J]. Materials Letters, 114, 26-28(2014).
[23] LIU Xianwen, SUN Changzheng, XIONG Bing et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators[J]. Optics Express, 25, 587-594(2017).
[24] YIN Junhua, CHEN Daihua, YANG Hang et al. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H–SiC[J]. Journal of Alloys and Compounds, 857, 157487(2021).
[25] XIONG Chi, PERNICE W H, TANG H X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing[J]. Nano Letters, 12, 3562-3568(2012).
[26] JUNG H, TANG H X. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion[J]. Nanophotonics, 5, 263-271(2016).
[27] YOKOYAMA T, IWAZAKI Y, ONDA Y et al. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 1007-1015(2015).
[28] BARTH S, BARTZSCH H, GLÖß D et al. Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications[J]. Microsystem Technologies, 22, 1613-1617(2016).
[29] HAIDER S T, SHAH M A, LEE D G et al. A review of the recent applications of aluminum nitride-based piezoelectric devices[J]. IEEE Access, 11, 58779-58795(2023).
[30] NOOR-A-ALAM M, OLSZEWSKI O Z, NOLAN M. Ferroelectricity and large piezoelectric response of AlN/ScN superlattice[J]. ACS Applied Materials & Interfaces, 11, 20482-20490(2019).
[31] THOMAS E, RANJITH R. Effect of doping in aluminium nitride (AlN) nanomaterials: a review[J]. ECS Transactions, 107, 15229(2022).
[32] NGUYEN H H, MINH L V, OGUCHI H. Development of highly efficient micro energy harvesters with MgHf-codoped AlN piezoelectric films[C], 222-225(2018).
[33] SONG Longfei, GLINSEK S, DEFAY E. Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications[J]. Applied Physics Reviews, 8, 041315(2021).
[34] WINZER P J. Making spatial multiplexing a reality[J]. Nature Photonics, 8, 345-348(2014).
[35] FRUNZA R, RICINSCHI D, GHEORGHIU F et al. Preparation and characterisation of PZT films by RF-magnetron sputtering[J]. Journal of Alloys and Compounds, 509, 6242-6246(2011).
[36] WINN J N, RUSIN D, KOCHANEK C S. The central image of a gravitationally lensed quasar[J]. Nature, 427, 613-615(2004).
[37] DU Xiaohong, ZHENG Jiehui, BELEGUNDU U et al. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary[J]. Applied Physics Letters, 72, 2421-2423(1998).
[38] KOVACOVA V, VAXELAIRE N, LE RHUN G et al. Correlation between electric-field-induced phase transition and piezoelectricity in lead zirconate titanate films[J]. Physical Review B, 90, 140101(2014).
[39] TAN G, MARUYAMA K, KANAMITSU Y et al. Crystallographic contributions to piezoelectric properties in PZT thin films[J]. Scientific Reports, 9, 7309(2019).
[40] QI Yifan, LI Yang. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).
[41] YANG Sen, BAO Huixin, ZHOU Chao et al. Large magnetostriction from morphotropic phase boundary in ferromagnets[J]. Physical Review Letters, 104, 197201(2010).
[42] BÖSCKE T S, MÜLLER J, BRÄUHAUS D et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 99, 102903(2011).
[43] MüLLER J, BÖSCKE TS, SCHRODER U et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano Letters, 12, 4318-4323(2012).
[44] MÜLLER S, MÜLLER J, SINGH A et al. Incipient ferroelectricity in Al-doped HfO2 thin films[J]. Advanced Functional Materials, 22, 2412-2417(2012).
[45] ZHANG Yu, XU Jun, ZHOU Dayu et al. Effects of Hf buffer layer at the Y-doped HfO2/Si interface on ferroelectric characteristics of Y-doped HfO2 films formed by reactive sputtering[J]. Ceramics International, 44, 12841-12846(2018).
[46] TROMM T C U, ZHANG J, SCHIBERT J et al. Ferroelectricity in Lu doped HfO2 layers[J]. Applied Physics Letters, 111, 142904(2017).
[47] KIM T, LIM J W, YUN S J et al. Multi-level long-term memory resembling human memory based on photosensitive field-effect transistors with stable interfacial deep traps[J]. Advanced Electronic Materials, 6, 1901044(2020).
[48] MITTMANN T, MATERANO M, LOMENZO P D et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering[J]. Advanced Materials Interfaces, 6, 1900042(2019).
[49] CHEEMA S S, KWON D, SHANKER N et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon[J]. Nature, 580, 478-482(2020).
[50] WEI Yingfen, NUKALA P, SALVERDA M et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films[J]. Nature Materials, 17, 1095-1100(2018).
[51] GLINCHUK M D, MOROZOVSKA A N, LUKOWIAK A et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films[J]. Journal of Alloys and Compounds, 830, 153628(2020).
[52] SAKASHITA Y, SEGAWA H. Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition[J]. Journal of Applied Physics, 77, 5995-5999(1995).
[53] LI Mingxiao, LING Jingwei, HE Yang et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).
[54] NAKATA Y, GUNJI S, OKADA T et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties[J]. Applied Physics A, 79, 1279-1282(2004).
[55] YOON J G, KIM K. Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process[J]. Applied Physics Letters, 68, 2523-2525(1996).
[56] HUANG Xingrui, LIU Yang, GUAN Huan et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform[J]. IEEE Photonics Technology Letters, 33, 1093-1096(2021).
[57] ZHU Di, SHAO Linbo, YU Mengjie et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).
[58] EDON V, RÈMIENS D, SAADA S. Structural, electrical and piezoelectric properties of LiNbO3 thin films for surface acoustic wave resonators applications[J]. Applied Surface Science, 256, 1455-1460(2009).
[59] CHEN Feifei, KONG Lingfeng, SONG Wei et al. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications[J]. Journal of Materiomics, 5, 73-80(2019).
[60] ZHUKOV R N, KUSHNEREV K S, KISELEV D A et al. Enhancement of piezoelectric properties of lithium niobate thin films by different annealing parameters[J]. Modern Electronic Materials, 6, 47-52(2020).
[61] YOO T S, LEE S A, ROH C et al. Ferroelectric polarization rotation in order-disorder-type LiNbO3 thin films[J]. ACS Applied Materials & Interfaces, 10, 41471-41478(2018).
[62] SEBBAG Y, GOYKHMAN I, DESIATOV B et al. Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film[J]. Applied Physics Letters, 100, 141107(2012).
[63] JIN W, POLCAWICHOL R G, MORTON P A et al. Phase tuning by length contraction[J]. Optics Express, 26, 3174-3187(2018).
[64] WANG Jiawei, LIU Kaikai, HARRINGTON M W et al. Silicon nitride stress-optic microresonator modulator for optical control applications[J]. Optics Express, 30, 31816-31827(2022).
[65] STANFIELD P R, LEENHEER A J, MICHAEL C P et al. CMOS-compatible, piezo-optomechanically tunable photonics for visible wavelengths and cryogenic temperatures[J]. Optics Express, 27, 28588-28605(2019).
[66] TIAN Hao, LIU Junqiu, DONG Bin et al. Hybrid integrated photonics using bulk acoustic resonators[J]. Nature Communications, 11, 3073(2020).
[67] EVERHARDTA, TRAN TLA, MITSOLIDOU C et al. Ultra-low power stress-based phase actuation in TriPleX photonic circuits[J]. Integrated Optics: Devices, Materials, and Technologies XXVI, 12004, 15-21(2022).
[68] LIU Junqiu, TIAN Hao, LUCAS E et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 583, 385-390(2020).
[69] JEAN P, GERVAIS A, LAROCHELLE S et al. Slow light in subwavelength grating waveguides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-8(2019).
[70] DONG M, HEIM D, WITTE A et al. Piezo-optomechanical cantilever modulators for VLSI visible photonics[J]. APL Photonics, 7, 051304(2022).
[71] TADESSE S A, LI Mo. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nature Communications, 5, 5402(2014).
[72] LI Huan, TADESSE S A, LIU Qiyu et al. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz[J]. Optica, 2, 826-831(2015).
[73] SOHN D B, BAHL G. Direction reconfigurable nonreciprocal acousto-optic modulator on chip[J]. APL Photonics, 4, 126103(2019).
[74] HUANG Chukun, SHI Haotian, YU Linfeng et al. Acousto-optic modulation in silicon waveguides based on piezoelectric aluminum scandium nitride film[J]. Advanced Optical Materials, 10, 2102334(2022).
[75] CAI Lutong, MAHMOUD A, KHAN M et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 7, 1003-1013(2019).
[76] SHAO Linbo, YU Mengjie, MAITY S et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 6, 1498-1505(2019).
[77] HASSANIEN A E, LINK S, YANG Yansong et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion[J]. Photonics Research, 9, 1182-1190(2021).
[78] SARABALIS C J, MCKENNA T P, PATEL R N et al. Acousto-optic modulation in lithium niobate on sapphire[J]. APL Photonics, 5, 086104(2020).
[79] KHAN M S I, MAHMOUD A, CAI Lutong et al. Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach-Zehnder acoustooptic modulator on lithium niobate[J]. Journal of Lightwave Technology, 38, 2053-2059(2020).
[80] YU Zejie, SUN Xiankai. Acousto-optic modulation of photonic bound state in the continuum[J]. Light: Science & Applications, 9, 1(2020).
[81] WAN Lei, YANG Zhiqiang, ZHOU Wenfeng et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides[J]. Light: Science & Applications, 11, 145(2022).
[82] YANG Zhiqiang, WEN Meixun, WAN Lei et al. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform[J]. Optics Letters, 47, 3808-3811(2022).
[83] TIAN Hao, LIU Junqiu, SIDDHARTH A et al. Magnetic-free silicon nitride integrated optical isolator[J]. Nature Photonics, 15, 828-836(2021).
[84] SOHN D B, KIM S, BAHL G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nature Photonics, 12, 91-97(2018).
[85] KITTLAUS E A, JONES W M, RAKICH P T et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nature Photonics, 15, 43-52(2021).
[86] ZHAN Han, LI Bingzhao, LI Huan et al. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics[J]. Nature Communications, 13, 5426(2022).
Get Citation
Copy Citation Text
Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG, Yikai SU. Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1113001
Category: Integrated Optics
Received: Oct. 1, 2023
Accepted: Nov. 6, 2023
Published Online: Dec. 22, 2023
The Author Email: Yong ZHANG (yongzhang@sjtu.edu.cn), Yikai SU (yikaisu@sjtu.edu.cn)