Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 2, 123(2025)
Intercomparisons of 532 nm polarization lidar and result analysis
[1] Quijano A L, Sokolik I N, Toon O B. Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions[J]. Journal of Geophysical Research-Atmospheres, 105, 12207-12219(2000).
[3] Engelmann R, Kanitz T, Baars H et al. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation[J]. Atmospheric Measurement Techniques, 9, 1767-1784(2016).
[4] Zhang Z, Huang J, Chen B et al. Three-year continuous observation of pure and polluted dust aerosols over Northwest China using the ground-based lidar and sun photometer data[J]. Journal of Geophysical Research: Atmospheres, 124, 1118-1131(2019).
[5] LYU L H, Xiang Y, Zhang T S et al. Comprehensive study of regional haze in the North China Plain with synergistic measurement from multiple mobile vehicle-based lidars and a lidar network[J]. Science of the Total Environment, 721, 137773(2020).
[6] Chen Y B, Li F F, Shao N et al. Aerosol lidar intercomparison in the framework of the MEMO project. 1. Lidar self calibration and 1 st comparison observation calibration based on statistical analysis method[C], 1-5(2019).
[7] D'Amico G, Amodeo A, Baars H et al. EARLINET Single Calculus Chain: Overview on methodology and strategy[J]. Atmospheric Measurement Techniques, 8, 4891-4916(2015).
[8] Sicard M, Molero F, Guerrero-Rascado J L et al. Aerosol lidar intercomparison in the framework of SPALINET―The Spanish lidar network: Methodology and results[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 3547-3559(2009).
[9] Böckmann C, Wandinger U, Ansmann A et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms[J]. Applied Optics, 43, 977-989(2004).
[10] Matthais V, Freudenthaler V, Amodeo A et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1.Instruments[J]. Applied Optics, 43, 961-976(2004).
[11] Freudenthaler V, Gross S, Engelmann R et al. EARLI09: Direct intercomparison of eleven EARLINET lidar systems[C], 5-9(2010).
[12] Papagiannopoulos N, Mona L, Alados-Arboledas L et al. CALIPSO climatological products: Evaluation and suggestions from EARLINET[J]. Atmospheric Chemistry and Physics, 16, 2341-2357(2016).
[13] Proestakis E, Amiridis V, Marinou E et al. EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product[J]. Atmospheric Chemistry and Physics, 19, 11743-11764(2019).
[14] Wandinger U, Freudenthaler V, Baars H et al. EARLINET instrument intercomparison campaigns: Overview on strategy and results[J]. Atmospheric Measurement Techniques, 9, 1001-1023(2016).
[15] Pappalardo G, Freudenthaler V, Nicolae D et al. Lidar calibration center[C], 119(2018).
[16] Campbell J R, Hlavka D L, Welton E J et al. Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing[J]. Journal of Atmospheric and Oceanic Technology, 19, 431-442(2002).
[17] He Q S, Mao J T. Observation of urban mixed layer at Beijing using a micro pulse lidar[J]. Acta Meteorologica Sinica, 63, 374-384(2005).
[18] Zhou H G, Chen Y B, Ma N et al. Application analysis of lidar network in a dust storm over Jiangsu Province[J]. Meteorological Hydrological and Marine Instrument, 35, 48-54(2018).
[19] Chen Y B, Wang X P, Bu Z C et al. Calibration and result analysis of aerosol LiDAR in megacity experiment[J]. Laser Technology, 46, 435-443(2022).
[20] Wang X P, Chen Y B, Bu Z C et al. Aerosol lidar intercomparison observation calibration at lidar stations based on REAL lidar[J]. Journal of Optoelectronics·Laser, 33, 133-140(2022).
[21] Xiang Y, Liu J G, Zhang T S et al. Uncertainty factors of aerosol optical properties inversion by lidar[J]. Laser & Optoelectronics Progress, 55, 092801(2018).
[22] Volker F, Holger L, Anatoli C et al. EARLINET lidar quality assurance tools[J]. Atmospheric Measurement Techniques Discussion, 1-35(2018).
[23] Freudenthaler V. About the effects of polarising optics on lidar signals and the Δ90o calibration[J]. Atmospheric Measurement Techniques, 9, 4181-4255(2016).
[24] Fernald F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 23, 652-653(1984).
[25] Bravo-Aranda J A, Belegante L, Freudenthaler V et al. Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator[J]. Atmospheric Measurement Techniques, 9, 4935-4953(2016).
[26] Wang W, Yi F, Liu F C et al. Characteristics and seasonal variations of cirrus clouds from polarization lidar observations at a 30o N plain site[J]. Remote Sensing, 12, 3998(2020).
Get Citation
Copy Citation Text
Zhichao BU, Zhenping YIN, Song MAO, Longlong WANG, Anzhou WANG, Jiangtao ZHANG, Bing ZHAO, Yang YI, Yubao CHEN, Xuan WANG. Intercomparisons of 532 nm polarization lidar and result analysis[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(2): 123
Category:
Received: Sep. 30, 2022
Accepted: --
Published Online: May. 30, 2025
The Author Email: Longlong WANG (longlong.wang@zjnu.edu.cn)