Optical Technique, Volume. 47, Issue 1, 120(2021)

Weak supervised abnormal behavior detection using improved YOLOv3 under video surveillance

ZHAO Xuezhang1、*, DING Beng1, and XI Yunjiang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [2] [2] Zhang J, Wu C, Wang Y, et al. Detection of abnormal behavior in narrow scene with perspective distortion[J]. Machine Vision and Applications,2019,30(5):987-998.

    [3] [3] Lai Y, Liu Z, Liu J. Abnormal detection method of industrial control system based on behavior model[J]. Computers & Security,2019,84(07):166-178.

    [6] [6] Qi M, Wang Y, Qin J, et al. StagNet: an attentive semantic RNN for group activity and individual action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(2):549-565.

    [8] [8] Qi M, Wang Y, Qin J, et al. StagNet: an attentive semantic RNN for group activity and individual action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(2):549-565.

    [10] [10] Shatalin R A, Fidelman V R, Ovchinnikov P E. Abnormal behavior detection based on dense trajectories[J]. Computer Optics,2018,42(3):476-482.

    [13] [13] Li Ying, Zhai Qiang, Ding Sihao, et al. Efficient health-related abnormal behavior detection with visual and inertial sensor integration[J]. Pattern Analysis and Applications,2019,22(2):601-614.

    [14] [14] Bera A, Kim S, Manocha D. Realtime anomaly detection using trajectory-wise crowd behavior learning[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),Las Vegas,NV:IEEE,2016:1289-1296.

    [15] [15] Chen K W, Chen Y T, Fang W H. Gaussian process regression-based video anomaly detection and localization with hierarchical feature representation[J] IEEE Transactions on Image Processing,2015,24(12):5288-5301.

    [16] [16] Hu X, Huang Y, Gao X, et al. Squirrel-cage local binary pattern and its application in video anomaly detection[J]. IEEE Transactions on Information Forensics and Security,2018,14(4):1007-1022.

    [17] [17] Ko K E, Sim K B. Deep convolutional framework for abnormal behavior detection in a smart surveillance system[J]. Engineering Applications of Artificial Intelligence,2018,67(1):226-234.

    [18] [18] Geng Y, Du J, Liang M. Abnormal event detection in tourism video based on salient spatio-temporal features and sparse combination learning[J]. World Wide Web,2019,22(2):689-715.

    [20] [20] Andrade E L, Blunsden S, Fisher R B. Hidden markov models for optical flow analysis in crowds[C]∥18th International Conference on Pattern Recognition (ICPR 2006).Hong Kong,China:IEEE,2006,12(5):460-463.

    [23] [23] Rabiee H, Mousavi H, Nabi M, et al. Detection and localization of crowd behavior using a novel tracklet-based model[J]. International Journal of Machine Learning and Cybernetics,2018,9(12):1999-2010.

    [24] [24] Peng C, Ma J. Semantic segmentation using stride spatial pyramid pooling and dual attention decoder[J]. Pattern Recognition,2020,107: 107498.

    [26] [26] Chunlei X, Longwen F, Zuoyi L, et al. Aquatic toxic analysis by monitoring fish behavior using computer vision: a recent progress[J]. Journal of Toxicology,2018,4(4):1-11.

    CLP Journals

    [1] WANG Jun, CHEN Min, DONG Mingli, YAN Bixi. Research on target detection algorithm based on multi-scale feature fusion[J]. Optical Technique, 2022, 48(6): 749

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Xuezhang, DING Beng, XI Yunjiang. Weak supervised abnormal behavior detection using improved YOLOv3 under video surveillance[J]. Optical Technique, 2021, 47(1): 120

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 8, 2020

    Accepted: --

    Published Online: Apr. 12, 2021

    The Author Email: Xuezhang ZHAO (zhaoxzhang@163.com)

    DOI:

    CSTR:32186.14.

    Topics