Chinese Journal of Lasers, Volume. 44, Issue 7, 701006(2017)
Automatically and Broadly Tunable All-Solid-State Continuous Single-Frequency Ti∶Sapphire Laser
[1] [1] Kuwamoto T, Honda K, Takahashi Y, et al. Magneto-optical trapping of Yb atoms using an int ercombination transition[J]. Physical Review A, 1999, 60(2): R745-R748.
[2] [2] Barber Z W, Hoyt C W, Oates C W, et al. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice[J]. Physical Review Letters, 2006, 96(8): 083002.
[3] [3] Xu Z, Wu Y, Tian L, et al. Long lifetime and high-fidelity quantum memory of photonics polarization qubit by lifting Zeeman degeneracy[J]. Physical Review Letters, 2013, 111(24): 240503.
[4] [4] Wolfgram F, Cerè A, Beduini F A, et al. Squeezed-light optical magnetometry[J]. Physical Review Letters, 2010, 105(5): 053601.
[5] [5] Coherent. MBR Ring Series[Z/OL].[2017-01-11]. http://www.coherent.com/lasers/laser/mbr-ring-series.
[6] [6] Spectra-Physics. Matisse 2[Z/OL].[2017-01-11]. http://www.spectra-physics.com/products/tunable-lasers/matisse.
[7] [7] M Squared. SolsTis[Z/OL].[2017-01-11]. http://www.m2lasers.com/lasers/all-lasers/solstis-ti-sapphire-laser.aspx.
[8] [8] TekhnoScan. TIS-SF[Z/OL].[2017-01-11]. http://www.tekhnoscan.com/english/ring_lasers.htm.
[10] [10] Lu Huadong. Intracavity losses measurement of the Ti∶sapphire laser with relaxation resonant oscillation frequency and output power[J]. Chinese J Lasers, 2013, 40(4): 0402002.
[12] [12] Sun X, Wei J, Wang W, et al. Realization of a continuous frequency-tuning Ti∶sapphire laser with an intracavity locked etalon[J]. Chinese Optics Letters, 2015, 13(7): 071401.
[13] [13] Jin P, Lu H, Wei Y, et al. Single-frequency CW Ti∶sapphire laser with intensity noise manipulation and continuous frequency-tuning[J]. Optics Letters, 2017, 42(1): 143-146.
[14] [14] Lu H, Sun X, Wang M, et al. Single frequency Ti∶sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss[J]. Optics Express, 2014, 22(20): 24551-24558.
[15] [15] Lu Huadong, Su Jing, Peng Kunchi. Suppression of intensity noise at low frequencies of Ti∶sapphire laser by optoelectronic control[J]. Chinese J Lasers, 2011, 38(4): 0402014.
[16] [16] Li Zhixiu, Yang Wenhai, Wang Yajun, et al. Optimal design of single-frequency laser system for 795 nm squeezed light source[J]. Chinese J Lasers, 2015, 42(9): 0902002.
[17] [17] Yin Q, Lu H, Su J, et al. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnetcrystal[J]. Optics Letters, 2016, 41(9): 2033-2036.
[18] [18] Xing Junhong, Jiao Mingxing. Design and experimental study of tunable dual-frequency Nd∶YAG laser with large frequency difference[J]. Laser & Optoelectronics Progress, 2015, 52(5): 051402.
[19] [19] Li Huijuan, Zhang Miao, Li Fengqin. High-power single-frequency 461 nm generation from an intracavity doubling of Ti∶sapphire laser with LBO[J]. Chinese J Lasers, 2016, 43(3): 0302003.
[20] [20] Lu Huadong. Investigation on CW single-frequency tunable Ti∶sapphire laser with its intensity noise[D]. Taiyuan: Shanxi University, 2011: 49-56.
Get Citation
Copy Citation Text
Su Jing, Jin Pixian, Wei Yixiao, Lu Huadong, Peng Kunchi. Automatically and Broadly Tunable All-Solid-State Continuous Single-Frequency Ti∶Sapphire Laser[J]. Chinese Journal of Lasers, 2017, 44(7): 701006
Category: laser devices and laser physics
Received: Feb. 6, 2017
Accepted: --
Published Online: Jul. 5, 2017
The Author Email: Su Jing (jingsu@sxu.edu.cn)