Photonics Research, Volume. 10, Issue 9, 2223(2022)
Experimental investigation of the uncertainty principle for radial degrees of freedom
[1] W. Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Z. Phys., 43, 172-198(1927).
[2] W. Heisenberg. The Physical Principles of the Quantum Theory(1949).
[3] H. P. Robertson. The uncertainty principle. Phys. Rev., 34, 163-164(1929).
[4] S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, M. Padgett. Uncertainty principle for angular position and angular momentum. New J. Phys., 6, 103(2004).
[5] H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826-829(1995).
[6] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).
[7] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).
[8] J. B. Götte, S. Franke-Arnold, S. M. Barnett. Angular EPR paradox. J. Mod. Opt., 53, 627-645(2006).
[9] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).
[10] M. P. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).
[11] V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 4, 2432(2013).
[12] F. Bouchard, J. Harris, H. Mand, R. W. Boyd, E. Karimi. Observation of subluminal twisted light in vacuum. Optica, 3, 351-354(2016).
[13] Á. S. Sanz, S. Miret-Artés. A Trajectory Description of Quantum Processes. I. Fundamentals: A Bohmian Perspective, 850(2012).
[14] J. Oppenheim, S. Wehner. The uncertainty principle determines the nonlocality of quantum mechanics. Science, 330, 1072-1074(2010).
[15] E. Karimi, E. Santamato. Radial coherent and intelligent states of paraxial wave equation. Opt. Lett., 37, 2484-2486(2012).
[16] E. Karimi, R. W. Boyd, P. de la Hoz, H. de Guise, J. R. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, L. L. Sánchez-Soto. Radial quantum number of Laguerre-Gauss modes. Phys. Rev. A, 89, 063813(2014).
[17] W. N. Plick, M. Krenn. Physical meaning of the radial index of Laguerre-Gauss beams. Phys. Rev. A, 92, 063841(2015).
[18] D. Geelen, W. Löffler. Walsh modes and radial quantum correlations of spatially entangled photons. Opt. Lett., 38, 4108-4111(2013).
[19] E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, R. W. Boyd. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys. Rev. A, 89, 013829(2014).
[20] D. Zhang, X. Qiu, W. Zhang, L. Chen. Violation of a Bell inequality in two-dimensional state spaces for radial quantum number. Phys. Rev. A, 98, 042134(2018).
[21] P. D. Robinson, J. O. Hirschfelder. Generalized momentum operators in quantum mechanics. J. Math. Phys., 4, 338-347(1963).
[22] K. Fujikawa. Non-Hermitian radial momentum operator and path integrals in polar coordinates. Prog. Theor. Phys., 120, 181-195(2008).
[23] P. A. M. Dirac. The Principles of Quantum Mechanics, 27(1981).
[24] L. Chen, T. Ma, X. Qiu, D. Zhang, W. Zhang, R. W. Boyd. Realization of the Einstein-Podolsky-Rosen paradox using radial position and radial momentum variables. Phys. Rev. Lett., 123, 060403(2019).
[25] T. Ma, D. Zhang, X. Qiu, Y. Chen, L. Chen. Radial diffraction of light in the radial momentum state space. Opt. Lett., 45, 5152-5155(2020).
[26] M. N. O’Sullivan-Hale, I. Ali Khan, R. W. Boyd, J. C. Howell. Pixel entanglement: experimental realization of optically entangled
[27] N. H. Valencia, V. Srivastav, M. Pivoluska, M. Huber, N. Friis, W. McCutcheon, M. Malik. High-dimensional pixel entanglement: efficient generation and certification. Quantum, 4, 376(2020).
[28] E. Ben-Eliezer, E. Marom, N. Konforti, Z. Zalevsky. Radial mask for imaging systems that exhibit high resolution and extended depths of field. Appl. Opt., 45, 2001-2013(2006).
[29] J. Twamley. Quantum distribution functions for radial observables. J. Phys. A, 31, 4811-4819(1998).
[30] J. Twamley, G. J. Milburn. The quantum Mellin transform. New J. Phys., 8, 328(2006).
[31] G. Bonneau, J. Faraut, G. Valent. Self-adjoint extensions of operators and the teaching of quantum mechanics. Am. J. Phys., 69, 322-331(2001).
[32] V. S. Araujo, F. A. B. Coutinho, J. F. Perez. Operator domains and self-adjoint operators. Am. J. Phys., 72, 203-213(2004).
[33] G. Paz. The non-self-adjointness of the radial momentum operator in
[34] E. Merzbacher. Quantum Mechanics(1961).
[35] N. Radwell, R. F. Offer, A. Selyem, S. Franke-Arnold. Optimisation of arbitrary light beam generation with spatial light modulators. J. Opt., 19, 095605(2017).
Get Citation
Copy Citation Text
Zhihe Zhang, Dongkai Zhang, Xiaodong Qiu, Yuanyuan Chen, Sonja Franke-Arnold, Lixiang Chen, "Experimental investigation of the uncertainty principle for radial degrees of freedom," Photonics Res. 10, 2223 (2022)
Category: Quantum Optics
Received: Sep. 20, 2021
Accepted: Jul. 24, 2022
Published Online: Sep. 1, 2022
The Author Email: Yuanyuan Chen (chenyy@xmu.edu.cn), Sonja Franke-Arnold (Sonja.Franke-Arnold@glasgow.ac.uk), Lixiang Chen (chenlx@xmu.edu.cn)