Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 9, 925(2024)
Applications and explorations of Artificial Intelligence of Things in the field of intelligent connected vehicles
[20] [20] KORTLI Y,GABSI S,VOON L F C L Y,et al. Deep embedded hybrid CNN-LSTM network for lane detection on NVIDIA Jetson Xavier NX[J]. Knowledge-Based Systems, 2022(240):107941. doi:10.1016/j.knosys.2021.107941.
[21] [21] BARNELL M, RAYMOND C, SMILEY S, et al. Ultra low-power deep learning applications at the edge with Jetson Orin AGX hardware[C]// Proceedings of the 2022 IEEE High Performance Extreme Computing Conference. Waltham, MA, USA: IEEE,2022:1-4. doi:10.1109/HPEC55821.2022.9926369.
[22] [22] SONG Shiping, WU Jian, ZHANG Sumin, et al. Research on target tracking algorithm using millimeter-wave radar on curved road[J]. Mathematical Problems in Engineering, 2020(4):1-21. doi:10.1155/2020/3749759.
[23] [23] CHANG K,YAN Li. LLNet:a fusion classification network for land localization in real-world scenarios[J]. Remote Sensing, 2022,14(8):1876. doi:10.3390/rs14081876.
[26] [26] DANGSKUL W, PHATTARAVATIN K, RATTANAPORN K, et al. Real-time control using convolution neural network for selfdriving cars[C]// 2021 the 7th International Conference on Engineering, Applied Sciences and Technology(ICEAST). Pattaya,Thailand:IEEE, 2021:125-128. doi:10.1109/ICEAST52143.2021.9426255.
[27] [27] LI Guofa,YANG Yifan,QU Xingda,et al. A deep learning based image enhancement approach for autonomous driving at night[J].Knowledge-Based Systems, 2021(213):106617. doi:10.1016/j.knosys.2020.106617.
[28] [28] QUAN Yingshuai, CHUNG C C. Approximate model predictive control with recurrent neural network for autonomous driving vehicles[C]// Proceedings of the 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan.Hiroshima,Japan:IEEE, 2019:1076-1081. doi:10.23919/SICE.2019.8859955.
[29] [29] MO Xiaoyu, XING Yang, LYU Chen. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving[C]// Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Indianapolis, IN, USA:IEEE, 2021:1934-1939. doi:10.1109/ITSC48978.2021.9564929.
[30] [30] BREWITT C,GYEVNAR B,GARCIN S,et al. GRIT:fast,interpretable,and verifiable goal recognition with learned decision trees for autonomous driving[C]// Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.Prague,Czech Republic:IEEE, 2021:1023-1030. doi:10.1109/IROS51168.2021.9636279.
[31] [31] PAPPALARDO G, CAFISO S, DI GRAZIANOA A, et al. Decision tree method to analyze the performance of lane support systems[J]. Sustainability, 2021,13(2):846. doi:10.3390/su13020846.
[32] [32] SHI Qian, ZHANG Hui. Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets[J]. IEEE Transactions on Industrial Electronics, 2021,68(7):6248-6256. doi:10.1109/TIE.2020.2994868.
[33] [33] XUE Yan,DOU Dongyang,YANG Jianguo. Multi-fault diagnosis of rotating machinery based on deep convolution neural network and support vector machine[J]. Measurement, 2020(156):107571. doi:10.1016/j.measurement.2020.107571.
[34] [34] CAI Peide, WANG Hengli, SUN Yuxiang, et al. DQ-GAT: towards safe and efficient autonomous driving with deep Q-learning and graph attention networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21102-21112. doi: 10.1109/TITS.2022.3184990.
[35] [35] SHANG Yuze,LIU Fei,QIN Ping,et al. Research on path planning of autonomous vehicle based on RRT algorithm of Q-learning and obstacle distribution[J]. Engineering Computations, 2023,40(5):1266-1286. doi:10.1108/EC-11-2022-0672.
[36] [36] AHMED M, LIM C P, NAHAVANDI S. A deep Q-network reinforcement learning-based model for autonomous driving[C]//Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics(SMC) Melbourne, Australia: IEEE,2021:739-744. doi:10.1109/SMC52423.2021.9658892.
[37] [37] PENG Baiyu, SUN Qi, LI S E, et al. End-to-end autonomous driving through dueling double deep Q-network[J]. Automotive Innovation, 2021,4(3):328-337. doi:10.1007/s42154-021-00151-3.
[38] [38] LU Jingwei,HAN Liyuan,WEI Qinglai,et al. Event-triggered deep reinforcement learning using parallel control:a case study in autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2023,8(4):2821-2831. doi:10.1109/TIV.2023.3262132.
[39] [39] GUAN Yang,REN Yangang,LI S E,et al. Centralized cooperation for connected and automated vehicles at intersections by proximal policy optimization[J]. IEEE Transactions on Vehicular Technology, 2020,69(11):12597-12608. doi:10.1109/TVT.2020.3026111.
[40] [40] WU Yuanqing, LIAO Siqin, LIU Xiang, et al. Deep reinforcement learning on autonomous driving policy with auxiliary critic network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34(7):3680-3690. doi:10.1109/TNNLS.2021.3116063.
Get Citation
Copy Citation Text
MEI Huayue, TANG Huaping, DENG Jiwei, FU Haoyuan. Applications and explorations of Artificial Intelligence of Things in the field of intelligent connected vehicles[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(9): 925
Received: Jan. 31, 2024
Accepted: --
Published Online: Nov. 5, 2024
The Author Email: