Chinese Journal of Lasers, Volume. 48, Issue 5, 0501010(2021)
Continuous-Wave Single-Frequency 1.5 μm Laser Based on All-Solid-State Unidirectional Traveling-Wave Ring Cavity
[2] Feng J X, Li Y M, Tian X T et al. Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56 μm and the second harmonic generation output at 780 nm[J]. Optics Express, 16, 11871-11877(2008).
[4] Aasi J, Abbott B P, Abbott R et al. Advanced LIGO[J]. Classical and Quantum Gravity, 32, 074001(2015).
[5] Wehner S, Elkouss D, Hanson R. Quantum internet: a vision for the road ahead[J]. Science, 362, eaam9288(2018).
[12] Feng J X, Tian X T, Li Y M et al. Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3[J]. Applied Physics Letters, 92, 221102(2008).
[13] Wan Z J, Feng J X, Li Y J et al. Comparison of phase quadrature squeezed states generated from degenerate optical parametric amplifiers using PPKTP and PPLN[J]. Optics Express, 26, 5531-5540(2018).
[16] Chen Y J, Hou Q, Huang Y S et al. Efficient continuous-wave diode-pumped Er 3+∶Yb 3+ laser with sapphire cooling at 1.57 μm[J]. Optics Express, 25, 19320-19325(2017).
[17] Chen Y J, Lin Y F, Yang Z M et al. Eye-safe 1.55 μm Er∶Yb microchip laser[J]. OSA Continuum, 2, 142-150(2019).
[18] Laporta P, Longhi S, Taccheo S et al. Single-mode CW erbium-ytterbium glass laser at 1.5 μm[J]. Optics Letters, 18, 31-33(1993).
[20] Huang J H, Chen Y J, Lin Y F et al. 940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er∶Yb microchip lasers[J]. Optics Letters, 43, 1643-1646(2018).
[22] Liu J L, Wang Z Y, Li H et al. Stable, 12 W, continuous-wave single-frequency Nd∶YVO4 green laser polarized and dual-end pumped at 880 nm[J]. Optics Express, 19, 6777-6782(2011).
[25] Li Y J. Theoretical and experimental investigations of diode-pumped solid-state laser at 1.5 μm[D]. Taiyuan: Shanxi University(2013).
[26] Song F, Liu S J, Wu Z H et al. Determination of the thermal loading in laser-diode-pumped erbium-ytterbium-codoped phosphate glass microchip laser[J]. Journal of the Optical Society of America B, 24, 2327-2332(2007).
[27] Yin Q W, Lu H D, Su J et al. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal[J]. Optics Letters, 41, 2033-2036(2016).
[29] Bachor H A, Ralph T C. A guide to experiments in quantum optics[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 204-205(2004).
Get Citation
Copy Citation Text
Zijian Yao, Yuanji Li, Zheng Song, Jinxia Feng, Kuanshou Zhang. Continuous-Wave Single-Frequency 1.5 μm Laser Based on All-Solid-State Unidirectional Traveling-Wave Ring Cavity[J]. Chinese Journal of Lasers, 2021, 48(5): 0501010
Category: laser devices and laser physics
Received: Nov. 2, 2020
Accepted: Dec. 15, 2020
Published Online: Mar. 12, 2021
The Author Email: Kuanshou Zhang (kuanshou@sxu.edu.cn)