Optical Technique, Volume. 49, Issue 6, 680(2023)
Pulsar recognition algorithm based on decoupling training
[1] [1] Hewish A, Bell S J, Pilkington J D H, et al. Observation of a rapidly pulsating radio source[M]∥A Source Book in Astronomy and Astrophysics, 1900-1975. Cambridge: Harvard University Press,2013:498-504.
[4] [4] Hobbs G, Miller D, Manchester R N, et al. The parkes observatory pulsar data archive[J]. Publications of the Astronomical Society of Australia,2011,28(3):202-214.
[5] [5] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].(2016-01-07)[2022-05-31].https:∥airxiv.org/abs/1511.06434.
[9] [9] Morello V, Barr E D, Bailes M, et al. SPINN: a straightforward machine learning solution to the pulsar candidate selection problem[J]. Monthly Notices of the Royal Astronomical Society,2014,443(2):1651-1662.
[10] [10] Guo P, Duan F, Wang P, et al. Pulsar candidate classification using generative adversary networks[J]. Monthly Notices of the Royal Astronomical Society,2019,490(4):5424-5439.
[11] [11] Boyan Zhou, Quan Cui, Xinshen Wei, et al. BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition[C]∥IEEE Conference on Computer Vision and Pattem Recogition,2020.
[12] [12] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST),2011,2(3):1-27.
[13] [13] Shlens J. A tutorial on principal component analysis[EB/OL].(2014-03-03)[2022-05-31].https:∥arxiv.org/abs/1404.1100.
[14] [14] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST),2011,2(3):1-27.
Get Citation
Copy Citation Text
YIN Qian, CHE Runqi, YANG Ruyi, ZHENG Xin. Pulsar recognition algorithm based on decoupling training[J]. Optical Technique, 2023, 49(6): 680