Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0612005(2025)

Defect Detection of Photovoltaic Cells Using Three-Stage Cascade Lightweight Model

Ruiting Chen*, Zhibin Qiu, Zhiwen Cai, and Zeding Yang
Author Affiliations
  • School of Information Engineering, Nanchang University, Nanchang 330031, Jiangxi , China
  • show less
    Figures & Tables(16)
    EL images of photovoltaic cells with different types of defects. (a) Normal; (b) crack; (c) star crack; (d) finger; (e) black core; (f) horizontal dislocation; (g) vertical dislocation; (h) short circuit
    EL image preprocessing of photovoltaic cells. (a) Original image; (b) (c) image augmentation; (d) image enhancement
    Dataset information. (a) Number of labels for each type of defect; (b) size and number of target boxes
    Flow chart of photovoltaic cell defect detection
    Three-stage cascade lightweight network structure
    Structure diagram of the CFB module
    EMA attention mechanism
    Structure diagram of EMSHead
    EMSConv lightweight convolution
    Loss curve and mAP variation curve during training process
    PR curves of the model in test set
    Multi-target defect detection results of the YOLO-FEE model. (a)(c) Multi-target detection results; (b) thermal map of Fig.12(a); (d) thermal map of Fig.12(c)
    Single target defect detection results of the YOLO-FEE model. (a) Crack; (b) star crack; (c) finger; (d) black core; (e) horizontal dislocation; (f) vertical dislocation; (g) short circuit
    • Table 1. Model training parameters

      View table

      Table 1. Model training parameters

      Training stageModel parameter
      Training sampleEpochNumber of iterationsLearning rateBatch size
      Freeze55045034410-316
      Thaw550415068810-48
    • Table 2. Results of the ablation experiments

      View table

      Table 2. Results of the ablation experiments

      ModelAP /%
      CrackStar crackFingerBlack CoreHorizontal dislocationVertical dislocationShort circuit
      YOLOv8n86.898.796.198.898.899.399.5
      YOLOv8n+CSP_FBE87.597.895.599.299.499.099.5
      YOLOv8n+Faster_PANet85.697.895.699.199.295.899.5
      YOLOv8n+EMSHead84.497.996.698.999.599.599.5
      YOLO-FEE83.998.195.299.299.599.299.4
      ModelmAP /%Params /106FLOPs /109
      YOLOv8n96.83.0078.1
      YOLOv8n+CSP_FBE96.92.6557.2
      YOLOv8n+Faster_PANet96.12.6637.4
      YOLOv8n+EMSHead96.52.9126.4
      YOLO-FEE96.42.2154.8
    • Table 3. Comparative test results of the different models

      View table

      Table 3. Comparative test results of the different models

      ModelmAP@0.5 /%Params /106FLOPs /109FPS
      Faster R-CNN73.7137.099113.322.0
      YOLOv5s95.947.05715.638.2
      YOLOX95.654.2097.524.3
      YOLOv8s97.011.12828.559.3
      YOLOv8n96.83.0078.165.7
      YOLO-FEE96.42.2154.841.1
    Tools

    Get Citation

    Copy Citation Text

    Ruiting Chen, Zhibin Qiu, Zhiwen Cai, Zeding Yang. Defect Detection of Photovoltaic Cells Using Three-Stage Cascade Lightweight Model[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0612005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 29, 2024

    Accepted: Sep. 4, 2024

    Published Online: Mar. 12, 2025

    The Author Email:

    DOI:10.3788/LOP241759

    CSTR:32186.14.LOP241759

    Topics