Journal of Optoelectronics · Laser, Volume. 35, Issue 7, 761(2024)

A new type of information processor device: neuromorphic device

LIU Yilong1,2, LI Hui1,2, SU Linlin1, LI Xinwei1,2, and YANG Chengdong1,2、*
Author Affiliations
  • 1School of Electronic Information Engineering, Wuxi University, Wuxi, Jiangsu 214105, China
  • 2School of Electronic & Information Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 21044, China
  • show less
    References(43)

    [1] [1] THEIS T N, WONG H S P. The end of moore's law: A new beginning for information technology[J]. Computing in Science & Engineering, 2017, 19(2): 41-50.

    [2] [2] WANG Y, YIN L, HUANG W, et al. Optoelectronic synaptic devices for neuromorphic computing[J]. Advanced Intelligent Systems, 2021, 3(1): 2000099.

    [3] [3] WONG H S P, SALAHUDDIN S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3): 191-194.

    [4] [4] ATTWELL D, LAUGHLIN S B. An energy budget for signaling in the grey matter of the brain[J]. Journal of Cerebral Blood Flow & Metabolism, 2001, 21(10): 1133-1145.

    [5] [5] CHO S W, KWON S M, KIM Y H, et al. Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system[J]. Advanced Intelligent Systems, 2021, 3(6): 2000162.

    [8] [8] LI X, HAN Y, XU H, et al. Aquaporin 4 expression and ultrastructure of the blood-brain barrier following cerebral contusion injury[J]. Neural Regeneration Research, 2013, 8(4): 338-345.

    [9] [9] WU G, FENG P, WAN X, et al. Artificial synaptic devices based on natural chicken albumen coupled electric-double-layer transistors[J]. Scientific Reports, 2016, 6(1): 1-9.

    [10] [10] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on circuit theory, 1971, 18(5): 507-519.

    [11] [11] LIU Y, WANG X, CHEN W, et al. IGZO/Al2O3 based depressed synaptic transistor[J]. Superlattices and Microstructures, 2019, 128: 177-180.

    [12] [12] PEREIRA M, DEUERMEIER J, NOGUEIRA R, et al. Noble-metal-free memristive devices based on IGZO for neuromorphic applications[J]. Advanced Electronic Materials, 2020, 6(10): 2000242.

    [13] [13] WASER R, AONO M. Nanoionics-based resistive switching memories[J]. Nature Materials, 2007, 6(11): 833-840.

    [14] [14] WAN Q, SHARBATI M T, ERICKSON J R, et al. Emerging artificial synaptic devices for neuromorphic computing[J]. Advanced Materials Technologies, 2019, 4(4): 1900037.

    [15] [15] ZHAO Y, HUANG P, ZHOU Z, et al. A physics-based compact model for CBRAM retention behaviors based on atom transport dynamics and percolation theory[J]. IEEE Electron Device Letters, 2019, 40(4): 647-650.

    [16] [16] WANG R, ZHANG W L, WANG S S, et al. Memristor-based signal processing for compressed sensing[J]. Nanomaterials, 2023, 13(8): 1354.

    [17] [17] PREZIOSO M, MERRIKH B F, HOSKINS B, et al. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors[J]. Scientific Reports, 2016, 6(1): 21331.

    [18] [18] YU S, WU Y, JEYASINGH R, et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation[J]. IEEE Transactions on Electron Devices, 2011, 58(8): 2729-2737.

    [19] [19] CHANG T, JO S H, LU W. Short-term memory to long-term memory transition in a nanoscale memristor[J]. ACS Nano, 2011, 5(9): 7669-7676.

    [20] [20] CHEN J Y, HSIN C L, HUANG C W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories[J]. Nano Letters, 2013, 13(8): 3671.

    [21] [21] LEE J, LU W D. On-demand reconfiguration of nanomaterials: when electronics meets ionics[J]. Advanced Materials, 2018, 30(1): 1702770.

    [23] [23] HUANG W, XIA X, ZHU C, et al. Memristive artificial synapses for neuromorphic computing[J]. Nano-Micro Letters, 2021, 13(6): 85.

    [24] [24] PENG Z, WU F, JIANG L, et al. HfO2-based memristor as an artificial synapse for neuromorphic computing with Tri-layer HfO2/BiFeO3/HfO2 design[J]. Advanced Functional Materials, 2021, 31(48): 2107131.

    [25] [25] CHANG L Y, SIMANJUNTAK F M, HSU C L, et al. Suboxide interface induced digital-to-analog switching transformation in all Ti-based memristor devices[J]. Applied Physics Letters, 2020, 117(7): 073504.

    [26] [26] WANG D T, DAI Y W, XU J, et al. Resistive switching and synaptic behaviors of TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles[J]. IEEE Electron Device Letters, 2016, 37(7): 878-881.

    [27] [27] HU L, YANG J, WANG J, et al. All-optically controlled memristor for optoelectronic neuromorphic computing[J]. Advanced Functional Materials, 2021, 31(4): 2005582.

    [28] [28] LEE M, LEE W, CHOI S, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity[J]. Advanced Materials, 2017, 29(28): 1700951.

    [29] [29] HU D C, YANG R, JIANG L, et al. Memristive synapses with photoelectric plasticity realized in ZnO1-x/AlOy heterojunction[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6463-6470.

    [30] [30] LEI P, DUAN H, QIN L, et al. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses[J]. Advanced Functional Materials, 2022, 32(25): 2201276.

    [31] [31] HAM S, CHOI S, CHO H, et al. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity[J]. Advanced Functional Materials, 2019, 29(5): 1806646.

    [32] [32] LI R L, WANG W X, LI Y, et al. Multi-modulated optoelectronic memristor based on Ga2O3/MoS2 heterojunction for bionic synapses and artificial visual system[J]. Nano Energy, 2023, 111: 108398.

    [33] [33] ZHU L Q, XIAO H, LIU Y H, et al. Multi-gate synergic modulation in laterally coupled synaptic transistors[J]. Applied Physics Letters, 2015, 107(14): 143502.

    [34] [34] HE Y, LIU R, JIANG S, et al. IGZO-based floating-gate synaptic transistors for neuromorphic computing[J]. Journal of Physics D: Applied Physics, 2020, 53(21): 215106.

    [35] [35] ZIEGLER M, KOHLSTEDT H. Mimic synaptic behavior with a single floating gate transistor: a MemFlash synapse[J]. Journal of Applied Physics, 2013, 114(19): 194506.

    [36] [36] KIM M K, LEE J S. Ferroelectric analog synaptic transistors[J]. Nano Letters, 2019, 19(3): 2044-2050.

    [37] [37] WANG Y, ZHU Y, LI Y, et al. Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity[J]. Advanced Functional Materials, 2022, 32(1): 2107973.

    [38] [38] SUN J, OH S, CHOI Y, et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure[J]. Advanced Functional Materials, 2018, 28(47): 1804397.

    [39] [39] MENG J L, WANG T Y, CHEN L, et al. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application[J]. Nano Energy, 2021, 83: 105815.

    [40] [40] HOU Y X, LI Y, ZHANG Z C, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing[J]. ACS Nano, 2020, 15(1): 1497-1508.

    [41] [41] YANG C, QIAN J, JIANG S, et al. An optically modulated organic Schottky-barrier planar-diode-based artificial synapse[J]. Advanced Optical Materials, 2020, 8(13): 2000153.

    [45] [45] CHEN F, ZHOU Y, ZHU Y, et al. Recent progress in artificial synaptic devices: materials, processing and applications[J]. Journal of Materials Chemistry C, 2021, 9(27): 8372-8394.

    [46] [46] HU Y, YANG H, HUANG J, et al. Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55839-55849.

    [47] [47] WAN C, CHEN G, FU Y, et al. An artificial sensory neuron with tactile perceptual learning[J]. Advanced Materials, 2018, 30: 1801291.

    [49] [49] SHIM H, ERSHAD F, PATEL S, et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor[J]. Nature Electronics, 2022, 5(10): 660-671.

    [50] [50] TAN H W, TAO Q Z, PANDE I, et al. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves[J]. Nature Communications, 2020, 11(1): 1369.

    Tools

    Get Citation

    Copy Citation Text

    LIU Yilong, LI Hui, SU Linlin, LI Xinwei, YANG Chengdong. A new type of information processor device: neuromorphic device[J]. Journal of Optoelectronics · Laser, 2024, 35(7): 761

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 9, 2023

    Accepted: Dec. 13, 2024

    Published Online: Dec. 13, 2024

    The Author Email: YANG Chengdong (845781210@qq.com)

    DOI:10.16136/j.joel.2024.07.0295

    Topics