Acta Laser Biology Sinica, Volume. 33, Issue 3, 193(2024)

Plant Growth-promoting Rhizobacteria: Mechanisms and Perspectives

LI Xiaochun1, SONG Kai1, CHEN Bo1, JIANG Lian2, and HE Yawen1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(71)

    [1] [1] CHENG Z Y, MCCONKEY B J, GLICK B R. Proteomic studiesof plant-bacterial interactions[J]. Soil Biology and Biochemistry,2010, 42(10): 1673-1684.

    [2] [2] HILTNER L. über neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berücksichtigungder gründüngung und brache[Z]. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98: 59-78.

    [3] [3] SCHROEDER P, HARTMANN A. New developments in rhizosphere research[J]. Journal of Soils and Sediments, 2003, 3(4):227.

    [4] [4] BHAT B A, TARIQ L, NISSAR S, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stressmanagement[J]. Journal of Applied Microbiology, 2022, 133(5):2717-2741.

    [5] [5] BENAISSA A. Rhizosphere: role of bacteria to manage plant diseases and sustainable agriculture―a review[J]. Journal of BasicMicrobiology, 2024, 64(3): e2300361.

    [6] [6] TONG Qianqian, ZHU Ying, CUI Deling, et al. The developmentstatus of microbial fertilizer in China and its application in vegetable planting[J]. Soil and Fertilizer Sciences in China, 2022(4):259-266.

    [7] [7] IGUAL J M, VALVERDE A, CERVANTES E, et al. Phosphatesolubilizing bacteria as inoculants for agriculture: use of updatedmolecular techniques in their study[J]. Agronomie, 2001, 21(67):561-568.

    [8] [8] WEN Jiaxu, CHEN Xueli, XIAO Yang, et al. Major phosphorusdissolving bacteria species in soils and mechanisms of action[J].Northern Horticulture, 2023(14): 139-145.

    [9] [9] LIU Yingjie, ZHANG Lihong, ZHANG Hong, et al. Role ofphosphate solubilizing microorganisms in soil phosphorus cycle: areview[J]. Microbiology China, 2023, 50(8): 3671-3687.

    [10] [10] GROSS A, LIN Y, WEBER P K, et al. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests[J]. Ecology, 2020, 101(2): e02928.

    [11] [11] MA Ying, WANG Yue, SHI Xiaojun, et al. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation[J]. Environmental Science, 2022, 43(9): 4911-4922.

    [12] [12] ASHFAQ M, HASSAN H M, GHAZALI A H A, et al. Halotolerant potassium solubilizing plant growth promoting rhizobacteriamay improve potassium availability under saline conditions[J].Environmental Monitoring and Assessment, 2020, 192(11): 697.

    [13] [13] LIU Fangtong, FAN Haonan, SHEN Lixin, et al. Iron acquisitioby bacterial and adaptive immune responses[J]. MicrobiologyChina, 2019, 46(12): 3432-3439.

    [14] [14] RADZKI W, GUTIERREZ MA?ERO F J, ALGAR E, et al. Bacterial siderophores efficiently provide iron to iron-starved tomatoplants in hydroponics culture[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2013,104(3): 321-330.

    [15] [15] LEONG J. Siderophores: their biochemistry and possible role inthe biocontrol of plant pathogens[J]. Annual Review of Phytopathology, 1986, 24(1): 187-209.

    [16] [16] DENG Shengkun, LEI Fengjie, LONG Yiping, et al. Bacterialsiderophores antagonize phytopathogenic fungi and promoteplant growth: a review[J]. Microbiology China, 2023, 50(7):3198-3210.

    [17] [17] ZHANG Ting, ZHANG Ling, ZHANG Yingying, et al. Application progress of plant growth promoting bacteria in crops[J].Journal of Hebei Agricultural Sciences, 2022, 26(3): 33-37.

    [18] [18] JING Xiaoshu, DING Yan, HAN Xiaomei, et al. Advances insynthetic biology of associated nitrogen-fixation bacteria[J]. ActaMicrobiologica Sinica, 2021, 61(10): 3026-3034.

    [19] [19] PU Qiang, TAN Zhiyuan, PENG Guixiang, et al. Advances in rhizobia taxonomy[J]. Microbiology China, 2016, 43(3): 619-633.

    [20] [20] ZENG Ruier, GENG Qinghui, GAO Hengkuan, et al. Mechanismof symbiotic nodulation between nitrogen and peanut[J]. Hereditas (Beijing), 2023, 45(9): 801-812.

    [21] [21] WANG Jialong, LIU Chi, LEI Li, et al. Asymbiotic nitrogen-fixingbacteria and their nitrogen fixation potential[J]. Acta Microbiologica Sinica, 2022, 62(8): 2861-2878.

    [22] [22] TAO Y, FERRER J L, LJUNG K, et al. Rapid synthesis of auxinvia a new tryptophan-dependent pathway is required for shadeavoidance in plants[J]. Cell, 2008, 133(1): 164-176.

    [23] [23] GAO Yuanyuan, KONG Lulu, WEN Zhiliang. Effect of indole3-acetic acid on the growth of ornamental plants and efficiency ofheavy metal remediation[J]. Guangdong Agricultural Sciences,2022, 49(7): 65-71.

    [24] [24] BATES T R, LYNCH J P. Stimulation of root hair elongation inArabidopsis thaliana by low phosphorus availability[J]. PlantCell and Environment, 1996, 19(5): 529-538.

    [25] [25] JIA Z, GIEHL R F H, VON WIRéN N. Nutrient-hormone relations: driving root plasticity in plants[J]. Molecular Plant, 2022,15(1): 86-103.

    [26] [26] SALAZAR-CEREZO S, MARTíNEZ-MONTIEL N, GARCíASáNCHEZ J, et al. Gibberellin biosynthesis and metabolism: aconvergent route for plants, fungi and bacteria[J]. Microbiological Research, 2018, 208: 85-98.

    [27] [27] LEE K E, RADHAKRISHNAN R, KANG S M, et al. Enterococcus faecium LKE12 cell-free extract accelerates host plant growthvia gibberellin and indole-3-acetic acid secretion[J]. Journal ofMicrobiology and Biotechnology, 2015, 25(9): 1467-1475.

    [28] [28] SIDDIQUI M H, KHAN M N, MOHAMMAD F, et al. Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activitiesand in osmoprotectant accumulation in Brassica juncea L. undersalt stress[J]. Journal of Agronomy and Crop Science, 2008,194(3): 214-224.

    [29] [29] GU J, LI Z, MAO Y, et al. Roles of nitrogen and cytokinin signalsin root and shoot communications in maximizing of plant productivity and their agronomic applications[J]. Plant Science, 2018,274: 320-331.

    [30] [30] GOPALAN N S R, SHARMA R, MOHAPATRA S. Probing intothe unique relationship between a soil bacterium, Pseudomonas putida AKMP7 and Arabidopsis thaliana: a case of “conditionalpathogenesis”[J]. Plant Physiology and Biochemistry, 2022, 183:46-55.

    [31] [31] BARNAWAL D, BHARTI N, MAJI D, et al. ACC deaminasecontaining Arthrobacter protophormiae induces NaCl stresstolerance through reduced ACC oxidase activity and ethyleneproduction resulting in improved nodulation and mycorrhization inPisum sativum[J]. Journal of Plant Physiology, 2014, 171(11):884-894.

    [32] [32] GLICK B R. Bacteria with ACC deaminase can promote plantgrowth and help to feed the world[J]. Microbiological Research,2014, 169(1): 30-39.

    [33] [33] HEYDARIAN Z, GRUBER M, COUTU C, et al. Gene expression patterns in shoots of Camelina sativa with enhanced salinitytolerance provided by plant growth promoting bacteria producing1-aminocyclopropane-1-carboxylate deaminase or expression ofthe corresponding acdS gene[J]. Scientific Reports, 2021, 11(1):4260.

    [34] [34] VENTURI V, KEEL C. Signaling in the rhizosphere[J].Trends in Plant Science, 2016, 21(3): 187-198.

    [35] [35] MOSHYNETS O V, BABENKO L M, ROGALSKY S P, et al.Priming winter wheat seeds with the bacterial quorum sensingsignal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield[J]. PLoS One, 2019,14(2): e0209460.

    [36] [36] SCHIKORA A, SCHENK S T, STEIN E, et al. N-acyl-homoserinelactone confers resistance toward biotrophic and hemibiotrophicpathogens via altered activation of AtMPK6[J]. Plant Physiology,2011, 157(3): 1407-1418.

    [37] [37] ORTíZ-CASTRO R, MARTíNEZ-TRUJILLO M, LóPEZ-BUCIOJ. N-acyl-L-homoserine lactones: a class of bacterial quorumsensing signals alter post-embryonic root development in Arabidopsis thaliana[J]. Plant Cell and Environment, 2008, 31(10):1497-1509.

    [38] [38] SCHENK S T, HERNáNDEZ-REYES C, SAMANS B, et al.N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylicacid/oxylipin pathway[J]. Plant Cell, 2014, 26(6): 2708-2723.

    [39] [39] MUELLER K, GONZáLEZ J E. Complex regulation of symbioticfunctions is coordinated by MucR and quorum sensing in Sinorhizobium meliloti [J]. Journal of Bacteriology, 2011, 193(2):485-496.

    [40] [40] HE Y W, DENG Y, MIAO Y, et al. DSF-family quorum sensingsignal-mediated intraspecies, interspecies, and inter-kingdom communication[J]. Trends in Microbiology, 2023, 31(1): 36-50.

    [41] [41] KAKKAR A, NIZAMPATNAM N R, KONDREDDY A, et al.Xanthomonas campestris cell-cell signalling molecule DSF(diffusible signal factor) elicits innate immunity in plants and issuppressed by the exopolysaccharide xanthan[J]. Journal of Experimental Botany, 2015, 66(21): 6697-6714.

    [42] [42] DENG Y, WU J, YIN W, et al. Diffusible signal factor family signals provide a fitness advantage to Xanthomonas campestris pv.campestris in interspecies competition[J]. Environmental Microbiology, 2016, 18(5): 1534-1545

    [43] [43] ZHAI Tingting, LIU Fang, ZHAO Qian, et al. Auxin signalingpathway is involved in the regulation of root growth by bacterialquorum sensing molecule DSF in Arabidopsis thaliana[J]. PlantPhysiology Journal, 2022, 58(9): 1724-1734.

    [44] [44] WEISSKOPF L, SCHULZ S, GARBEVA P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions[J]. Nature Reviews Microbiology, 2021, 19(6): 391-404.

    [45] [45] LEMFACK M C, GOHLKE B O, TOGUEM S M T, et al. mVOC2.0: a database of microbial volatiles[J]. Nucleic Acids Research,2018, 46(D1): D1261-D1265.

    [46] [46] RYU C M, FARAG M A, HU C H, et al. Bacterial volatiles promote growth in Arabidopsis [J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2003,100(8): 4927-4932.

    [47] [47] DEL CARMEN OROZCO-MOSQUEDA M, VELAZQUEZBECERRA C, MACIAS-RODRIGUEZ L I, et al. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission[J]. Plant and Soil, 2013, 362(1/2): 51-66.

    [48] [48] PING L, BOLAND W. Signals from the underground: bacterialvolatiles promote growth in Arabidopsis [J]. Trends in Plant Science, 2004, 9(6): 263-266.

    [49] [49] CHO S M, KANG B R, HAN S H, et al. 2R, 3R-butanediol, abacterial volatile produced by Pseudomonas chlororaphis O6, isinvolved in induction of systemic tolerance to drought in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 2008,21(8): 1067-1075.

    [50] [50] LIU A, ZHANG P, BAI B, et al. Volatile organic compounds ofendophytic Burkholderia pyrrocinia strain JK-SH007 promotedisease resistance in poplar[J]. Plant Disease, 2020, 104(6):1610-1620.

    [51] [51] LUO H, RIU M, RYU C M, et al. Volatile organic compoundsemitted by Burkholderia pyrrocinia CNUC9 trigger inducedsystemic salt tolerance in Arabidopsis thaliana[J]. Frontiers inMicrobiology, 2022, 13: 1050901.

    [52] [52] CHEN W, WANG J, HUANG D, et al. Volatile organic compoundsfrom Bacillus aryabhattai MCCC 1K02966 with multiple modesagainst Meloidogyne incognita[J]. Molecules, 2021, 27(1):103.

    [53] [53] ZHANG H, KIM M S, SUN Y, et al. Soil bacteria confer plant salttolerance by tissue-specific regulation of the sodium transporterHKT1[J]. Molecular Plant-Microbe Interactions, 2008, 21(6):737-744.

    [54] [54] ZHANG J L, FLOWERS T J, WANG S M. Mechanisms of sodium uptake by roots of higher plants[J]. Plant and Soil, 2010,326(1/2): 45-60.

    [55] [55] WENKE K, WANKE D, KILIAN J, et al. Volatiles of two growthinhibiting rhizobacteria commonly engage AtWRKY18 function[J]. Plant Journal, 2012, 70(3): 445-459.

    [56] [56] SANTOYO G, URTIS-FLORES C A, LOEZA-LARA P D, et al.Rhizosphere colonization determinants by plant growth-promotingrhizobacteria (PGPR)[J]. Biology, 2021, 10(6): 475.

    [57] [57] SANTOYO G. How plants recruit their microbiome? New insightsinto beneficial interactions[J]. Journal of Advanced Research,2022, 40: 45-58.

    [58] [58] CAZORLA F M, DUCKETT S B, BERGSTR?M E T, et al.Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of2-hexyl 5-propyl resorcinol[J]. Molecular Plant-Microbe Interactions, 2006, 19(4): 418-428.

    [59] [59] WALLACE R L, HIRKALA D L, NELSON L M. Efficacy of Pseudomonas fluorescens for control of Mucor rot of apple during commercial storage and potential modes of action[J]. Canadian Journal of Microbiology, 2018, 64(6): 420-431.

    [60] [60] MEI Xiaofei, WANG Zhirong, KAN Jianquan. Advances inresearch for controlling fruits and vegetables diseases by usingPseudomonas fluorescens[J]. Acta Microbiologica Sinica, 2019,59(11): 2069-2082.

    [61] [61] ZHANG Liqun, ZHANG Junwei. Antibiotics produced by Pseudomonas spp.[J]. Chinese Journal of Biological Control, 2015,31(5): 750-756.

    [62] [62] TROPPENS D M, DMITRIEV R I, PAPKOVSKY D B, et al.Genome-wide investigation of cellular targets and mode of actionof the antifungal bacterial metabolite 2, 4-diacetylphloroglucinolin Saccharomyces cerevisiae[J]. Fems Yeast Research, 2013,13(3): 322-334.

    [63] [63] SUN Weibo, ZHAO Yangyang, MING Liang, et al. Antagonisticactivities of phenazine compounds against Erwinia amylovora [J]. Plant Protection, 2022, 48(6): 105-110.

    [64] [64] CHIN-A-WOENG T F C, BLOEMBERG G V, MULDERS I H M,et al. Root colonization by phenazine-1-carboxamide-producingbacterium Pseudomonas chlororaphis PCL1391 is essentialfor biocontrol of tomato foot and root rot[J]. Molecular PlantMicrobe Interactions, 2000, 13(12): 1340-1345.

    [65] [65] FANG Yunling, SUN Shuang, SHEN Yue, et al. Progress on thedevelopment and application of biopesticide Shenqinmycin[J].Chinese Journal of Pesticide Science, 2014, 16(4): 387-393.

    [66] [66] GUO Saisai, ZHANG Jingze. Research progress of Paenibacillus polymyxa and its lipopeptide compounds[J]. Chinese Journal ofPesticide Science, 2019, 21(Z1): 787-798.

    [67] [67] LANGNER T, KAMOUN S, BELHAJ K. CRISPR crops: plantgenome editing toward disease resistance[J]. Annual Review ofPhytopathology, 2018, 56: 479-512.

    [68] [68] SHELAKE R M, PRAMANIK D, KIM J Y. Exploration of plantmicrobe interactions for sustainable agriculture in CRISPR era[J].Microorganisms, 2019, 7(8): 269.

    [69] [69] TIMMS-WILSON T M, ELLIS R J, RENWICK A, et al. Chromosomal insertion of phenazine-1-carboxylic acid biosyntheticpathway enhances efficacy of damping-off disease control byPseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions, 2000, 13(12): 1293-1300.

    [70] [70] HUANG Z, BONSALL R F, MAVRODI D V, et al. Transformation of Pseudomonas fluorescens with genes for biosynthesis ofphenazine-1-carboxylic acid improves biocontrol of rhizoctoniaroot rot and in situ antibiotic production[J]. FEMS MicrobiologyEcology, 2004, 49(2): 243-251.

    [71] [71] JIAO Ziwei, ZHANG Xiangfeng, NUER Maimaiti, et al. Expression pqq gene cluster and its effects on mineral phosphate solubilization and plant promotion in Escherichia coli DH5α[J]. Journalof Agricultural Resources and Environment, 2016, 33(1): 43-48.

    Tools

    Get Citation

    Copy Citation Text

    LI Xiaochun, SONG Kai, CHEN Bo, JIANG Lian, HE Yawen. Plant Growth-promoting Rhizobacteria: Mechanisms and Perspectives[J]. Acta Laser Biology Sinica, 2024, 33(3): 193

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 18, 2023

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email: HE Yawen (yawenhe@sjtu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2024.03.001

    Topics