Journal of Functional Materials and Devices, Volume. 31, Issue 4, 261(2025)
Research status and challenges of portable continuous blood pressure monitoring technology
[1] [1] WHO. Noncommunicable diseases progress monitor[R]. Geneva: World Health Organization, 2022.
[2] [2] YI Z, ZHANG W, YANG B. Piezoelectric approaches for wearable continuous blood pressure monitoring: a review[J]. Journal of Micromechanics and Microengineering, 2022, 32(10): 103003.
[3] [3] KIREEV D, SEL K, IBRAHIM B, et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos[J]. Nature Nanotechnology, 2022, 17(8): 864-870.
[4] [4] LI J, JIA H, ZHOU J, et al. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure[J]. Nature Communications, 2023, 14: 5009.
[5] [5] WANG T W, CHEN W X, CHU H W, et al. Single-channel bioimpedance measurement for wearable continuous blood pressure monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4001909.
[6] [6] BARVIK D, CERNY M, PENHAKER M, et al. Noninvasive continuous blood pressure estimation from pulse transit time: a review of the calibration models[J]. IEEE Reviews in Biomedical Engineering, 2022, 15: 138-151.
[7] [7] CHUNG H U, KIM B H, LEE J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care[J]. Science, 2019, 363(6430): eaau0780.
[8] [8] CHUNG H U, RWEI A Y, HOURLIER-FARGETTE A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units[J]. Nature Medicine, 2020, 26(3): 418-429.
[9] [9] HUANG K, MA Z, KHOO B L. Advancements in bio-integrated flexible electronics for hemodynamic monitoring in cardiovascular healthcare[J]. Advanced Science, 2025, 12(25): 2415215.
[10] [10] MENG K, XIAO X, WEI W, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials, 2022, 34(21): e2109357.
[11] [11] MUKKAMALA R, STERGIOU G S, AVOLIO A P. Cuffless blood pressure measurement[J]. Annual Review of Biomedical Engineering, 2022, 24: 203-230.
[12] [12] WHO. WHO technical specifications for automated non-invasive blood pressure measuring devices with cuff[R]. Geneva: World Health Organization, 2020.
[13] [13] DIAS F M, CARDENAS D A C, TOLEDO M A F, et al. Exploring the limitations of blood pressure estimation using the photoplethysmography signal[J]. Physiological Measurement, 2025, 46(4): 045007.
[14] [14] ELGENDI M, FLETCHER R, LIANG Y, et al. The use of photoplethysmography for assessing hypertension[J]. NPJ Digital Medicine, 2019, 2: 60.
[15] [15] NOH S A, KIM H S, KANG S H, et al. History and evolution of blood pressure measurement[J]. Clinical Hypertension, 2024, 30(1): 9.
[16] [16] KUWABARA M, HARADA K, HISHIKI Y, et al. Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2: 2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL[J]. The Journal of Clinical Hypertension, 2019, 21(6): 853-858.
[17] [17] TAKAHASHI H, SAITO K, HISHIKI Y. Validation of Omron HEM-7600T, a wearable device for monitoring blood pressure, according to the American National Standards Institute/Association for the Advancement of Medical Instrumentation/International Organization for Standardization 81060-2: 2013 protocol in the general population without arrhythmias[J]. Blood Pressure Monitoring, 2021, 26(2): 156-159.
[18] [18] KOMORI T, EGUCHI K, HOSHIDE S, et al. Comparison of wrist-type and arm-type 24-h blood pressure monitoring devices for ambulatory use[J]. Blood Pressure Monitoring, 2013, 18(1): 57-62.
[19] [19] DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring[J]. Nature Communications, 2014, 5: 4496.
[20] [20] WU D, XU L, ZHANG R, et al. Continuous cuff-less blood pressure estimation based on combined information using deep learning approach[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(6): 1290-1299.
[21] [21] MA Y, CHOI J, HOURLIER-FARGETTE A, et al. Relation between blood pressure and pulse wave velocity for human arteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11144-11149.
[22] [22] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
[23] [23] LI H, MA Y, LIANG Z, et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor[J]. National Science Review, 2020, 7(5): 849-862.
[24] [24] [18] PANDIT J A, LORES E, BATLLE D. Cuffless blood pressure monitoring: promises and challenges[J]. Clinical Journal of the American Society of Nephrology, 2020, 15(10): 1531-1538.
[25] [25] FORTIN J, ROGGE D E, FELLNER C, et al. A novel art of continuous noninvasive blood pressure measurement[J]. Nature Communications, 2021, 12: 1387.
[26] [26] DING X R, ZHAO N, YANG G Z, et al. Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th birth anniversary of Carl ludwig[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(6): 1455-1465.
[27] [27] KACHUEE M, KIANI M M, MOHAMMADZADE H, et al. Cuffless blood pressure estimation algorithms for continuous health-care monitoring[J]. IEEE Transactions on Bio-Medical Engineering, 2017, 64(4): 859-869.
[28] [28] SHARMA M, BARBOSA K, HO V, et al. Cuff-less and continuous blood pressure monitoring: a methodological review[J]. Technologies, 2017, 5(2): 21.
[29] [29] YI Z, YANG H, TIAN Y, et al. Self-powered force sensor based on thinned bulk PZT for real-time cutaneous activities monitoring[J]. IEEE Electron Device Letters, 2018, 39(8): 1226-1229.
[30] [30] ERSHAD F, THUKRAL A, YUE J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment[J]. Nature Communications, 2020, 11: 3823.
[31] [31] WANG C, LI X, HU H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device[J]. Nature Biomedical Engineering, 2018, 2(9): 687-695.
[32] [32] YI Z, HUANG J, LIU Z, et al. Portable, wireless wearable piezoelectric arterial pulse monitoring system based on near-field communication approach[J]. IEEE Electron Device Letters, 2020, 41(1): 183-186.
[33] [33] ARAKAWA M, KUDO K, KOBAYASHI K, et al. Blood pressure measurement using piezoelectric effect by an ultrasonic probe[J]. Sensors and Actuators A: Physical, 2019, 286: 146-151.
[34] [34] YI Z, LIU Z, LI W, et al. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring[J]. Advanced Materials, 2022, 34(16): 2110291.
[35] [35] MIN S, KIM D H, JOE D J, et al. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring[J]. Advanced Materials, 2023, 35(26): e2301627.
[36] [36] MIN S, AN J, LEE J H, et al. Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation[J]. Nature Reviews Cardiology, 2025: 1-20.
[37] [37] ZHOU S, PARK G, LONGARDNER K, et al. Clinical validation of a wearable ultrasound sensor of blood pressure[J]. Nature Biomedical Engineering, 2025, 9(6): 865-881.
[38] [38] YI Z, XIE F, TIAN Y, et al. A battery- and leadless heart-worn pacemaker strategy[J]. Advanced Functional Materials, 2020, 30(25): 2000477.
[39] [39] CLEMENTE F, ARPAIA P, CIMMINO P. A piezo-film-based measurement system for global haemodynamic assessment[J]. Physiological Measurement, 2010, 31(5): 697-714.
[40] [40] YOU S, SHI H, WU J, et al. A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications[J]. Journal of Applied Physics, 2016, 120(23): 234103.
[41] [41] WANG X, SUN F, YIN G, et al. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review[J]. Sensors, 2018, 18(2): 330.
[42] [42] CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nature Materials, 2019, 18(3): 234-241.
[43] [43] HORCHIDAN N, CIOMAGA C E, FRUNZA R C, et al. A comparative study of hard/soft PZT-based ceramic composites[J]. Ceramics International, 2016, 42(7): 9125-9132.
[44] [44] LOOCK F V, DEUTZ D B, VAN DER ZWAAG S, et al. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear[J]. Smart Materials and Structures, 2016, 25(8): 085039.
[45] [45] DAGDEVIREN C, JOE P, TUZMAN O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mechanics Letters, 2016, 9: 269-281.
[46] [46] AKEDO J, PARK J H, KAWAKAMI Y. Piezoelectric thick film fabricated with aerosol deposition and its application to piezoelectric devices[J]. Japanese Journal of Applied Physics, 2018, 57(7S1): 07LA02.
[47] [47] YI Z, ZHANG W, YANG B. Flexible piezo-MEM fabrication process based on thinned piezoelectric thick film[C]//Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). New York: IEEE, 2021: 670-673.
[48] [48] AVOLIO A P, BUTLIN M, WALSH A. Arterial blood pressure measurement and pulse wave analysis: Their role in enhancing cardiovascular assessment[J]. Physiological Measurement, 2010, 31(1): R1-R47.
[49] [49] WANG T W, LIN S F. Wearable piezoelectric-based system for continuous beat-to-beat blood pressure measurement[J]. Sensors, 2020, 20(3): 851.
[50] [50] WANG H, WANG L, SUN N, et al. Quantitative comparison of the performance of piezoresistive, piezoelectric, acceleration, and optical pulse wave sensors[J]. Frontiers in Physiology, 2019, 10: 1563.
[51] [51] D'AMBROGIO G, ZAHHAF O, BORDET M, et al. Structuring BaTiO3/PDMS nanocomposite via dielectrophoresis for fractional flow reserve measurement[J]. Advanced Engineering Materials, 2021, 23(10): 2100341.
[52] [52] PARK D Y, JOE D J, KIM D H, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 2017, 29(37): 1702308.
[53] [53] PETRITZ A, KARNER-PETRITZ E, UEMURA T, et al. Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes[J]. Nature Communications, 2021, 12: 2399.
[54] [54] CHEN J, LIU H, WANG W, et al. High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film[J]. Advanced Functional Materials, 2019, 29(37): 1903162.
[55] [55] AL-JUMAILY A M, LAN H, STERGIOPULOS N. Brachial artery waveforms for automatic blood pressure measurement[J]. Journal of Biomechanics, 2013, 46(3): 506-510.
[56] [56] SAITO T, MORI S, ARAKAWA M, et al. Estimation of viscoelasticity of radial artery via simultaneous measurement of changes in pressure and diameter using a single ultrasound probe[J]. Japanese Journal of Applied Physics, 2020, 59: SKKE04.
[57] [57] LAURILA M M, PELTOKANGAS M, LOZANO MONTERO K, et al. Evaluation of printed P(VDF-TrFE) pressure sensor signal quality in arterial pulse wave measurement[J]. IEEE Sensors Journal, 2019, 19(23): 11072-11080.
[58] [58] LIU Z D, LIU J K, WEN B, et al. Cuffless blood pressure estimation using pressure pulse wave signals[J]. Sensors, 2018, 18(12): 4227.
[59] [59] HU D, ZHOU N, XIE C L, et al. Non-invasive measurement of pulse rate variability signals by a PVDF pulse sensor[C]//Intelligent Robotics and Applications. Cham: Springer, 2020: 52-64.
[60] [60] LI T, QU M, CARLOS C, et al. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors[J]. Advanced Materials, 2021, 33(3): 2006093.
[63] [63] DAGDEVIREN C, SHI Y, JOE P, et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics[J]. Nature Materials, 2015, 14(7): 728-736.
[64] [64] HAN M, WANG H, YANG Y, et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants[J]. Nature Electronics, 2019, 2(1): 26-35.
Get Citation
Copy Citation Text
YI Zhiran, ZHANG Wenming. Research status and challenges of portable continuous blood pressure monitoring technology[J]. Journal of Functional Materials and Devices, 2025, 31(4): 261
Received: Apr. 1, 2025
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: YI Zhiran (yizhiran@sjtu.edu.cn)