Laser & Optoelectronics Progress, Volume. 62, Issue 3, 0330002(2025)

Identification of Common Knife LIBS Spectra Using 1D-CNN Combined with Data Augmentation

Tao Zhang*, Chunyu Li, and Chuanzhao Li
Author Affiliations
  • Institute of Criminal Investigation, People's Public Security University of China, Beijing 100038, China
  • show less
    Figures & Tables(12)
    Schematic of experimental setup
    Principle of 1D-CNN
    Original spectra of samples. (a) Sample number 40; (b) sample number 100
    PCA flowchart
    Interpretation rate and cumulative interpretation rate of the top 400 principal components
    Accuracy curves and loss function curves
    Synthetic data of sample number 40. (a) Normal distribution method; (b) linear combination method
    Synthetic data of sample number 100. (a) Normal distribution method; (b) linear combination method
    Average prediction accuracy
    • Table 1. Parameter settings of 1D-CNN

      View table

      Table 1. Parameter settings of 1D-CNN

      Neural network layerModel parameter
      Input layerPreprocessed LIBS data
      Convolutional layer 1Kernel_size is 1×3,stride is 1,filters are 64,Relu
      Pooling layer 1Max pooling,pool_size is 1×2,strides are 2
      Convolutional layer 2Kernel_size is 1×3,stride is 1,filters are 128,Relu
      Pooling layer 2Max pooling,pool_size is 1×2,strides are 2
      Convolutional layer 3Kernel_size is 1×3,stride is 1,filters are 256,Relu
      Pooling layer 3Max pooling,pool_size is 1×2,strides are 2
      Convolutional layer 4Kernel_size is 1×3,stride is 1,filters are 512,Relu
      Pooling layer 4Max pooling,pool_size is 1×2,strides are 2
      Convolutional layer 5Kernel_size is 1×3,stride is 1,filters are 512,Relu
      Pooling layer 5Global max pooling
      Fully connected layer 1128 neurons
      Dropout layer 1Randomly dropping out 20% of the neurons
      Fully connected layer 264 neurons
      Dropout layer 2Randomly dropping out 20% of the neurons
      Output layer138 neurons
    • Table 2. Prediction accuracy of normal distribution method

      View table

      Table 2. Prediction accuracy of normal distribution method

      Expansion amountPrediction accuracy
      MaxMinAverage
      00.96740.94570.9602
      400.97100.96380.9686
      800.97830.97100.9746
      1200.98190.97100.9746
    • Table 3. Prediction accuracy of linear combination method

      View table

      Table 3. Prediction accuracy of linear combination method

      Expansion amountPrediction accuracy
      MaxMinAverage
      00.96740.94570.9602
      400.94570.90230.9215
      800.95650.93480.9481
      1200.94930.92390.9348
    Tools

    Get Citation

    Copy Citation Text

    Tao Zhang, Chunyu Li, Chuanzhao Li. Identification of Common Knife LIBS Spectra Using 1D-CNN Combined with Data Augmentation[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0330002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Apr. 14, 2024

    Accepted: Jun. 4, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241095

    CSTR:32186.14.LOP241095

    Topics