Laser Technology, Volume. 46, Issue 2, 239(2022)

Improvement of ECO target tracking algorithm based on GhostNet convolution feature

LIU Chaojun, DUAN Xiping*, and XIE Baowen
Author Affiliations
  • [in Chinese]
  • show less
    References(28)

    [1] [1] BRUHN A, WEICKERT J, SCHNRR C. Combining local and glo-bal optic flow methods[J]. International Journal of Computer Vision (IJCV), 2005, 61(3): 211-231.

    [2] [2] CRUZ-MOTA J, BOGDANOVA I, PAQUIER B, et al. Scale invariant feature transform on the sphere: Theory and applications[J]. International Journal of Computer Vision (IJCV), 2012, 98(2): 217-241.

    [3] [3] MEI X, LING H, WU Y, et al. Efficient minimum error bounded particle resampling L1 tracker with occlusion detection[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2661-2675.

    [4] [4] COLLINS J, ROGERS T. Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel[J]. Physical Review, 2015, D91(7): 074020.

    [5] [5] HARE S, GOLODETZ S, SAFFARI A, et al. Struck:structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016, 38(10): 2096-2109.

    [6] [6] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2014, 37(3): 583-596.

    [7] [7] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision (ECCV). Berlin, Heidelberg: Springer, 2012: 702-715.

    [8] [8] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//International Confe-rence on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2010: 2544-2550.

    [9] [9] LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]// International Conference on Computer Vision and Pattern Recognition(CVPR). New York, USA: IEEE, 2018: 4904-4913.

    [10] [10] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2011, 34(7): 1409-1422.

    [11] [11] DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016, 39(8): 1561-1575.

    [12] [12] DANELLJAN M, HAGER G, SHAHBAZ KHAN F, et al. Convolutional features for correlation filter based visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops(ICCV). New York, USA: IEEE, 2015: 58-66.

    [13] [13] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient convolution operators for tracking[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2017: 6638-6646.

    [14] [14] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//European Conference on Computer Vision (ECCV). Cham, Amsterdam, Netherlands: Springer,2016: 850-865.

    [15] [15] LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]// International Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2018: 8971-8980.

    [16] [16] PARK E, BERG A C. Meta-tracker: Fast and robust online adaptation for visual object trackers[C]// European Conference on Computer Vision (ECCV).Springer, Cham, Munich,Germany,2018: 569-585.

    [17] [17] WANG G, LUO C, SUN X, et al. Tracking by instance detection: A meta-learning approach[C]// International Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2020: 6288-6297.

    [18] [18] RAZIYE E, ASKAR H. Infrared dim point target tracking algorithm based on meta learning [J ]. Laser Technology, 2021,45(3):396-404(in Chinese).

    [19] [19] VOIGTLAENDER P, LUITEN J, TORR P H S, et al. Siam R-CNN: Visual tracking by re-detection[C]// International Confe-rence on Computer Vision and Pattern Recognition (CVPR). New York, USA : IEEE, 2020: 6578-6588.

    [20] [20] HAN K, WANG Y, TIAN Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2020: 1580-1589.

    [21] [21] KUAN K, MANEK G, LIN J, et al. Region average pooling for context-aware object detection[C]//2017 IEEE International Confe-rence on Image Processing (ICIP). New York, USA: IEEE, 2017: 1347-1351.

    [22] [22] DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV). New York, USA: IEEE, 2015: 4310-4318.

    [23] [23] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York, USA: IEEE, 2016: 1401-1409.

    [24] [24] GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV). New York, USA: IEEE, 2017: 1135-1143.

    [25] [25] LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//International Conference on Computer Vision and Pattern Recognition(CVPR). New York, USA: IEEE, 2018: 4904-4913.

    [26] [26] QU Z, YI W, ZHOU R, et al. Scale self-adaption tracking method of defog-PSA-Kcf defogging and dimensionality reduction of foreign matter intrusion along railway lines[J]. IEEE Access, 2019, 7: 126720-126733.

    [27] [27] YAN J, ZHONG L, YAO Y, et al. Dual-template adaptive correlation filter for real-time object tracking[J]. Multimedia Tools and Applications, 2021, 80(2): 2355-2376.

    [28] [28] DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016, 39(8): 1561-1575.

    Tools

    Get Citation

    Copy Citation Text

    LIU Chaojun, DUAN Xiping, XIE Baowen. Improvement of ECO target tracking algorithm based on GhostNet convolution feature[J]. Laser Technology, 2022, 46(2): 239

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 9, 2021

    Accepted: --

    Published Online: Mar. 8, 2022

    The Author Email: DUAN Xiping (xpduan_1999@126.com)

    DOI:10.7510/jgjs.issn.1001-3806.2022.02.015

    Topics